Skip to main content
Skip to article control options
No AccessFull-Length Paper

Influences of Simulator Motion System Characteristics on Pilot Control Behavior

Published Online:https://doi.org/10.2514/1.59257

Low-cost motion systems have been proposed for certain training tasks that would otherwise be performed on high-performance full-flight simulators. These systems usually have lower bandwidth and lower smoothness. The influence of these characteristics on pilot perception and control behavior is unknown and needs to be investigated. In this paper, this is done by simulating a model of a simulator with limited capabilities on a high-end simulator. The platform limitations, which consist of a platform filter, time delay, and noise characteristics, can then be removed one by one, and their effect on control behavior is studied in isolation. An experiment was conducted to identify pilot perception and control behavior in a closed-loop control task. The time delay and noise characteristics of the simulators did not have an effect. However, it was found that the bandwidth of the motion system had a significant effect on performance and control behavior. Results indicate that the motion cues were barely used at all in conditions with a low bandwidth, and that participants relied on the visual cues to generate lead to perform the control task.

References

  • [1] FAA Approval of Basic Aviation Training Devices (BATD) and Advanced Aviation Training Devices (AATD),” Federal Aviation Administration, Rept. No.  AC-61-136, July 2008. Google Scholar

  • [2] Manual of Criteria for the Qualification of Flight Simulation Training Devices. Volume 1—Airplanes, 3rd ed., International Civil Aviation Organization, No. 9625, 2009. Google Scholar

  • [3] Hays R. T., Jacobs J. W., Prince C. and Salas E., “Flight Simulator Training Effectiveness: A Meta-Analysis,” Military Psychology, Vol. 4, No. 2, 1992, pp. 63–74. doi:https://doi.org/10.1207/s15327876mp0402_1 1532-7876 CrossrefGoogle Scholar

  • [4] Bürki-Cohen J., Soja N. N. and Longridge T., “Simulator Platform Motion—The Need Revisited,” The International Journal of Aviation Psychology, Vol. 8, No. 3, 1998, pp. 293–317. doi:https://doi.org/10.1207/s15327108ijap0803_8 1532-7108 CrossrefGoogle Scholar

  • [5] Bürki-Cohen J. and Go T. H., “The Effect of Simulator Motion Cues on Initial Training of Airline Pilots,” AIAA Paper  2005-6109, Aug. 2005. LinkGoogle Scholar

  • [6] Go T. H., Bürki-Cohen J., Chung W. W. Y., Schroeder J. A., Saillant G., Jacobs S. and Longridge T., “The Effects of Enhanced Hexapod Motion on Airline Pilot Recurrent Training and Evaluation,” AIAA Paper  2003-5678, Aug. 2003. LinkGoogle Scholar

  • [7] Bürki-Cohen J., Go T. H. and Longridge T., “Flight Simulator Fidelity Considerations for Total Air Line Pilot Training and Evaluation,” AIAA Paper  2001-4425, Aug. 2001. Google Scholar

  • [8] Sparko A. L. and Bürki-Cohen J., “Transfer of Training from a Full-Flight Simulator vs. a High Level Flight Training Device with a Dynamic Seat,” AIAA Paper  2010-8218, Aug. 2010. LinkGoogle Scholar

  • [9] de Winter J. C. F., Dodou D. and Mulder M., “Training Effectiveness of Whole Body Flight Simulator Motion: A Comprehensive Meta-Analysis,” The International Journal of Aviation Psychology, Vol. 22, No. 2, April 2012, pp. 164–183. doi:https://doi.org/10.1080/10508414.2012.663247 1532-7108 CrossrefGoogle Scholar

  • [10] Stapleford R. L., Peters R. A. and Alex F. R., “Experiments and a Model for Pilot Dynamics with Visual and Motion Inputs,” NASA CR-1325, 1969. Google Scholar

  • [11] Zaal P. M. T., Pool D. M., de Bruin J., Mulder M. and van Paassen M. M., “Use of Pitch and Heave Motion Cues in a Pitch Control Task,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, March–April 2009, pp. 366–377. doi:https://doi.org/10.2514/1.39953 JGCDDT 0162-3192 LinkGoogle Scholar

  • [12] Pool D. M., Mulder M., van Paassen M. M. and van der Vaart J. C., “Effects of Peripheral Visual and Physical Motion Cues in Roll-Axis Tracking Tasks,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, Nov.–Dec. 2008, pp. 1608–1622. doi:https://doi.org/10.2514/1.36334 JGCDDT 0162-3192 LinkGoogle Scholar

  • [13] Nieuwenhuizen F. M., Zaal P. M. T., Teufel H. J., Mulder M. and Bülthoff H. H., “The Effect of Simulator Motion on Pilot Control Behaviour for Agile and Inert Helicopter Dynamics,” Proceedings of the 35th European Rotorcraft Forum, Hamburg, Germany, Deutsche Gesellschaft für Luft-und Raumfahrt–Lilienthal Oberth e.V. (DGLR), 22–25 Sept. 2009. Google Scholar

  • [14] Ringland R. F. and Stapleford R. L., “Motion Cue Effects on Pilot Tracking,” Seventh Annual Conference on Manual Control, Univ. of Southern California, Los Angeles, CA, NASA, Washington, D.C., 2–4 June 1971, pp. 327–338. Google Scholar

  • [15] Schroeder J. A., “Helicopter Flight Simulation Motion Platform Requirements,” NASA TP-1999-208766, July 1999. Google Scholar

  • [16] Telban R. J., Cardullo F. M. and Kelly L. C., “Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms,” NASA CR-2005-213748, 2005. Google Scholar

  • [17] Pool D. M., Zaal P. M. T., van Paassen M. M. and Mulder M., “Effects of Heave Washout Settings in Aircraft Pitch Disturbance Rejection,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, Jan.–Feb. 2010, pp. 29–41. doi:https://doi.org/10.2514/1.46351 JGCDDT 0162-3192 LinkGoogle Scholar

  • [18] Miller G. K. and Riley D. R., “The Effect of Visual-Motion Time-Delays on Pilot Performance in a Simulated Pursuit Tracking Task,” NASA TN-D-8364, March 1977. Google Scholar

  • [19] Hess R. A., “Effects of Time Delays on Systems Subject to Manual Control,” Journal of Guidance, Control, and Dynamics, Vol. 7, No. 4, 1984, pp. 416–421. doi:https://doi.org/10.2514/3.19872 JGCDDT 0162-3192 LinkGoogle Scholar

  • [20] Levison W. H. and Papazian B., “The Effects of Time Delay and Simulator Mode on Closed-Loop Pilot/Vehicle Performance: Model Analysis and Manned Simulation Results,” Proceedings of the AIAA Flight Simulation Technologies Conference, AIAA Paper  1987-2371, 17–19 Aug. 1987, pp. 39–49. Google Scholar

  • [21] Levison W. H., Lancraft R. E. and Junker A. M., “Effects of Simulator Delays on Performance and Learning in a Roll-Axis Tracking Task,” Fifteenth Annual Conference on Manual Control, Wright State Univ., Dayton, OH, 20–22 March 1979, pp. 168–186. Google Scholar

  • [22] Bailey R. E., Knotts L. H., Horowitz S. J. and Malone H. L., “Effect of Time Delay in Manual Flight Control and Flying Qualities During In-Flight and Ground-Based Simulation,” AIAA Paper  1987-2370, Aug. 1987. LinkGoogle Scholar

  • [23] Lean D. and Gerlach O. H., “AGARD Advisory Report No. 144: Dynamics Characteristics of Flight Simulator Motion Systems,” AGARD AR-144, 1979. Google Scholar

  • [24] Nieuwenhuizen F. M., Beykirch K. A., Mulder M., van Paassen M. M., Bonten J. L. G. and Bülthoff H. H., “Performance Measurements on the MPI Stewart Platform,” AIAA Paper  2008-6531, Aug. 2008. LinkGoogle Scholar

  • [25] Nieuwenhuizen F. M., Changes in Pilot Control Behaviour Across Stewart Platform Motion Systems, Ph.D. Dissertation, Faculty of Aerospace Engineering, Delft Univ. of Technology, Delft, The Netherlands, July 2012. Google Scholar

  • [26] Gundry A. J., “Thresholds to Roll Motion in a Flight Simulator,” Journal of Aircraft, Vol. 14, No. 7, July 1977, pp. 624–631. doi:https://doi.org/10.2514/3.58832 JAIRAM 0021-8669 LinkGoogle Scholar

  • [27] Zaal P. M. T., Pool D. M., Mulder M. and van Paassen M. M., “Multimodal Pilot Control Behavior in Combined Target-Following Disturbance-Rejection Tasks,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, Sept.–Oct. 2009, pp. 1418–1428. doi:https://doi.org/10.2514/1.44648 JGCDDT 0162-3192 LinkGoogle Scholar

  • [28] Stroosma O., van Paassen M. M., Mulder M. and Postema F. N., “Measuring Time Delays in Simulator Displays,” AIAA Paper  2007-6562, Aug. 2007. LinkGoogle Scholar

  • [29] Zaal P. M. T., Pool D. M., Chu Q. P., van Paassen M. M., Mulder M. and Mulder J. A., “Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 4, July–Aug. 2009, pp. 1089–1099. doi:https://doi.org/10.2514/1.42843 JGCDDT 0162-3192 LinkGoogle Scholar

  • [30] Nieuwenhuizen F. M., Zaal P. M. T., Mulder M., van Paassen M. M. and Mulder J. A., “Modeling Human Multichannel Perception and Control Using Linear Time-Invariant Models,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, July–Aug. 2008, pp. 999–1013. doi:https://doi.org/10.2514/1.32307 JGCDDT 0162-3192 LinkGoogle Scholar

  • [31] Pool D. M., Zaal P. M. T., Damveld H. J., van Paassen M. M., van der Vaart J. C. and Mulder M., “Modeling Wide-Frequency-Range Pilot Equalization for Control of Aircraft Pitch Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 5, Sept.–Oct. 2011, pp. 1529–1542. doi:https://doi.org/10.2514/1.53315 JGCDDT 0162-3192 LinkGoogle Scholar

  • [32] McRuer D. T., Graham D., Krendel E. S. and Reisener W., “Human Pilot Dynamics in Compensatory Systems. Theory, Models and Experiments with Controlled Element and Forcing Function Variations,” Air Force Flight Dynamics Laboratory AFFDL-TR-65-15, 1965. CrossrefGoogle Scholar

  • [33] Hosman R. J. A. W., “Pilot’s Perception and Control of Aircraft Motions,” Ph.D. Dissertation, Faculty of Aerospace Engineering, Delft Univ. of Technology, Delft, The Netherlands, 1996. Google Scholar

  • [34] Jex H. R. and Magdaleno R. E., “Roll Tracking Effects of G-Vector Tilt and Various Types of Motion Washout,” Fourteenth Annual Conference on Manual Control, Univ. of Southern California, Los Angeles, CA, 25–27 April 1978, pp. 463–502. Google Scholar

  • [35] van der Vaart J. C., “Modelling of Perception and Action in Compensatory Manual Control Tasks,” Ph.D. Dissertation, Faculty of Aerospace Engineering, Delft Univ. of Technology, Delft, The Netherlands, 1992. Google Scholar

  • [36] Zaal P. M. T., Nieuwenhuizen F. M., Paassen M. M. and Mulder M., “Modeling Human Control of Self-Motion Direction with Optic Flow and Vestibular Motion,” IEEE Transactions on Systems, Man, and Cybernetics; Part B: (to be published). Google Scholar