Skip to main content
No AccessEngineering Note

Joseph Formulation of Unscented and Quadrature Filters with Application to Consider States

Published Online:https://doi.org/10.2514/1.59935
Free first page

References

  • [1] Bucy R. S. and Joseph P. D., Filtering for Stochastic Processing with Applications to Guidance, 2nd ed., AMS Chelsea Publ., Providence, RI, 2005, pp. 55–57. Google Scholar

  • [2] Zanetti R., DeMars K. J. and Bishop R. H., “Underweighting Nonlinear Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 5, 2010, pp. 1670–1675. doi:https://doi.org/10.2514/1.50596 JGCDDT 0162-3192 LinkGoogle Scholar

  • [3] Woodbury D. and Junkins J., “On the Consider Kalman Filter,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2010-7752, Aug. 2010. LinkGoogle Scholar

  • [4] Bierman G. J., Factorization Methods for Discrete Sequential Estimation, Vol. 128, Mathematics in Sciences and Engineering, Academic Press, New York, 1978, pp. 96–100. Google Scholar

  • [5] Arasaratnam I., Haykin S. and Elliot R. J., “Discrete-Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature,” Proceedings of the IEEE, Vol. 95, No. 5, 2007, pp. 953–977. doi:https://doi.org/10.1109/JPROC.2007.894705 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [6] Julier S. J., Uhlmann J. K. and Durrant-Whyte H. F., “A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control, Vol. 45, No. 3, March 2000, pp. 477–482. doi:https://doi.org/10.1109/9.847726 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [7] Schmidt S. F., “Application of State-Space Methods to Navigation Problems,” edited by Leones C. T., Vol. 3, Advances in Control Systems, 1966, pp. 293–340. CrossrefGoogle Scholar

  • [8] Jazwinski A. H., Stochastic Processes and Filtering Theory, Vol. 64, Mathematics in Sciences and Engineering, Academic Press, New York, 1970, p. 285. Google Scholar

  • [9] Tapley B. D., Schutz B. E. and Born G. H., Statistical Orbit Determination, Elsevier, New York, 2004, Chap. 6. CrossrefGoogle Scholar

  • [10] Woodbury D. P., Majji M. and Junkins J. L., “Considering Measurement Model Parameter Errors in Static and Dynamic Systems,” Journal of the Astronautical Sciences, Vol. 58, No. 3, 2011, pp. 461–478. JALSA6 0021-9142 CrossrefGoogle Scholar

  • [11] Zanetti R., Advanced Navigation Algorithms for Precision Landing, Ph.D. Thesis, Univ. of Texas at Austin, Austin, TX, Dec. 2007. Google Scholar

  • [12] Zanetti R. and Bishop R. H., “Kalman Filters with Uncompensated Biases,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 327–330. doi:https://doi.org/10.2514/1.55120 JGCDDT 0162-3192 LinkGoogle Scholar

  • [13] Zanetti R. and Bishop R. H., “Precision Entry Navigation Dead-Reckoning Error Analysis: Theoretical Foundations of the Discrete-Time Case,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Vol. 129, Advances in the Astronautical Sciences, 2007, pp. 979–994; also American Astronautical Society Paper  07-311, Springfield, VA, 2007. Google Scholar

  • [14] Hough M. E., “Orbit Determination with Improved Covariance Fidelity, Including Sensor Measurement Biases,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 903–911. doi:https://doi.org/10.2514/1.53053 JGCDDT 0162-3192 LinkGoogle Scholar

  • [15] Lisano M. E., “Nonlinear Consider Covariance Analysis Using a Sigma-Point Filter Formulation,” 29th Annual AAS Guidance and Control Conference, American Astronautical Society Paper  06-035, Feb. 2006. Google Scholar

  • [16] Papoulis A., Probability, Random Variables, and Stochastic Processes, 1st ed., McGraw–Hill, New York, 1965, pp. 219–220. Google Scholar

  • [17] Ito K. and Xiong K., “Gaussian Filters for Nonlinear Filtering Problems,” IEEE Transactions on Automatic Control, Vol. 45, No. 5, May 2000, pp. 910–927. doi:https://doi.org/10.1109/9.855552 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [18] Uhlmann J. K., Simultaneous Map Building and Localization for Real Time Applications, Ph.D. Thesis, Univ. of Oxford, Oxford, 1994. Google Scholar

  • [19] Julier S. J. and Uhlmann J. K., “Unscented Filtering and Nonlinear Estimation,” Proceedings of the IEEE, Vol. 92, No. 3, March 2004, pp. 401–422. doi:https://doi.org/10.1109/JPROC.2003.823141 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [20] van der Merwe R., Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Ph.D. Thesis, Oregon Health and Science Univ., Portland, OR, 2004. Google Scholar

  • [21] Julier S. J., “The Scaled Unscented Transformation,” Proceedings of the American Control Conference, Vol. 6, May 2002, pp. 4555–4559. doi:https://doi.org/10.1109/ACC.2002.1025369 69CDEQ Google Scholar