Skip to main content
No AccessFull-Length Paper

Long-Life Europa Geodesy Orbits Accounting for Navigation Uncertainties

Published Online:

This work investigates the properties of phase space near a periodic orbit and their applications to orbit design and orbit determination. A low-altitude, near-polar periodic orbit is computed and an error covariance is generated by processing range-rate and altimetry measurements over seven days. The resulting covariance is used to disperse the orbit initial conditions in a Monte Carlo simulation. The distribution of the Monte Carlo run is biased toward longer orbit lifetimes, due to the stable and unstable manifolds associated with the periodic orbit. The orbit determination covariance is mapped into manifold coordinates and long lifetime orbits are shown to be aligned with the stable manifold. Periodic orbit continuation is used to generate a family of orbits with similar phase-space characteristics to understand the variation of manifold structure with orbit elements and Jacobi energy. The effect of Europa eccentricity on the phase-space location of long lifetime orbits is discussed and conclusions are given regarding the connection between orbit lifetime, design, and determination.


  • [1] Clark K., Magner T., Pappalardo R., Blanc M., Greeley R., Lebreton J., Jones C. and Sommerer J., “Jupiter Europa Orbiter Mission Study 2008: Final Report,” NASA NMO710851, Feb. 2009. Google Scholar

  • [2] Scheeres D. J., Guman M. D. and Villac B. F., “Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp. 778–787. doi: JGCDDT 0162-3192 LinkGoogle Scholar

  • [3] Boone D. R. and Scheeres D. J., “Evaluating Periodic Orbits for the JEO Mission at Europa in Terms of Lifetime and Stability,” American Astronautical Society Paper  11-518, Aug. 2011. Google Scholar

  • [4] Casotto S. and Padovan S., “Detecting Body Tides and Librations of Europa with an Altimetric Exploration Mission,” AIAA Paper  2008-7200, Aug. 2008. LinkGoogle Scholar

  • [5] Wu X., Bar-Sever Y. E., Folkner W. M., Williams J. G. and Zumberge J. F., “Probing Europas Hidden Ocean from Tidal Effects on Orbital Dynamics,” Geophysical Research Letters, Vol. 28, No. 11, 2001, pp. 2245–2248. doi: GPRLAJ 0094-8276 CrossrefGoogle Scholar

  • [6] Lambeck K., Geophysical Geodesy: The Slow Deformations of the Earth, Oxford Univ. Press, New York, 1988, pp. 576–579. Google Scholar

  • [7] Wahr J. M., Zuber M. T., Smith D. E. and Lunine J. I., “Tides on Europa, and the Thickness of Europa’s Icy Shell,” Journal of Geophysical Research, Vol. 111, No. E12, 2006, p. 2. doi: JGREA2 0148-0227 CrossrefGoogle Scholar

  • [8] Szebehely V., Theory of Orbits: The Restricted Problem of Three Bodies, Academic Press, New York, 1967, pp. 556–557. CrossrefGoogle Scholar

  • [9] Paskowitz-Possner M., “Orbit Design and Control of Planetary Satellite Orbiters in the Hill 3-Body Problem,” Ph.D. Dissertation, Aerospace Engineering Dept., Univ. of Michigan, Ann Arbor, MI, 2007. Google Scholar

  • [10] McCarthy D. D., “IERS Technical Note 21,” International Earth Rotation Service TN-21, July 1996, pp. 40–42. Google Scholar

  • [11] Gomez G., Lara M. and Russell R. P., “Dynamical Systems Approach to the Design of the Science Orbit Around Europa,” 19th International Symposium on Space Flight Dynamics, ISSFD Paper  2006-d-02, Kanazawa, Japan, June 2006. Google Scholar

  • [12] Lara M. and Russell R. P., “Computation of a Science Orbit About Europa,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 259–263. doi: JGCDDT 0162-3192 LinkGoogle Scholar

  • [13] Russell R. P., “Global Search for Planar and Three-Dimensional Periodic Orbits Near Europa,” American Astronautical Society Paper  05-290, Aug. 2005. Google Scholar

  • [14] Scheeres D. J., Williams B. G. and Miller J. K., “Evaluation of the Dynamic Environment of an Asteroid: Applications to 433 Eros,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp. 466–475. doi: JGCDDT 0162-3192 LinkGoogle Scholar

  • [15] Paskowitz-Possner M. and Scheeres D. J., “Design of Science Orbits About Planetary Satellites: Application to Europa,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1147–1158. JGCDDT 0162-3192 LinkGoogle Scholar

  • [16] Tapley B. D., Schutz B. E. and Born G. H., Statistical Orbit Determination, Elsevier, New York, 2004, pp. 387–400. CrossrefGoogle Scholar

  • [17] McGrath M. A., Hansen C. J. and Hendrix A. R., “Observations of Europa’s Tenuous Atmosphere,” Europa, Univ. of Arizona Press, Tuscon, AZ, 2009, pp. 485–506. Google Scholar

  • [18] Gustafson E. D. and Scheeres D. J., “Dynamically Relevant Local Coordinates for Halo Orbits,” AIAA Paper  2008-6432, Aug. 2008. LinkGoogle Scholar

  • [19] Scheeres D. J., Han D. and Hou Y., “Influence of Unstable Manifolds on Orbit Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 3, 2001, pp. 573–585. doi: JGCDDT 0162-3192 LinkGoogle Scholar

  • [20] Scheeres D. J., Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters, Springer, Berlin, 2012, pp. 136–138. CrossrefGoogle Scholar