Skip to main content
Skip to article control options
No AccessFull-Length Paper

Space Object Shape Characterization and Tracking Using Light Curve and Angles Data

Published Online:https://doi.org/10.2514/1.62986

This paper presents a new method, based on a multiple-model adaptive estimation approach, to determine the most probable shape of a resident space object among a number of candidate shape models while simultaneously recovering the observed resident space object’s inertial orientation and trajectory. Multiple-model adaptive estimation uses a parallel bank of filters, each operating under a different hypothesis to determine an estimate of the physical system under consideration. In this work, the shape model of the resident space object constitutes the hypothesis. Estimates of the likelihood of each hypothesis, given the available measurements, are provided from the multiple-model adaptive estimation approach. The multiple-model adaptive estimation state estimates are determined using a weighted average of the individual filter estimates, whereas the shape estimate is selected as the shape model with the highest likelihood. Each filter employs the unscented estimation approach, reducing passively collected electro-optical data to infer the unknown state vector composed of the resident space object’s inertial-to-body orientation, position, and respective temporal rates. Each hypothesized shape model results in a different observed optical cross-sectional area. The effects of solar radiation pressure may be recovered from accurate angles data alone, if the collected measurements span a sufficiently long period of time, so as to make the nonconservative mismodeling effects noticeable. However, for relatively short arcs of data, this effect is weak, and thus the temporal brightness of the resident space object can be used in conjunction with the angles data to exploit the fused sensitivity to both the resident space object shape model and associated trajectory. Initial simulation results show that the resident space object model and states can be recovered accurately with the proposed approach.

References

  • [1] Sato T., Wakayama T., Tanaka T., Ikeda K.-i. and Kimura I., “Shape of Space Debris as Estimated from Radar Cross Section Variations,” Journal of Spacecraft and Rockets, Vol. 31, No. 4, July–Aug. 1994, pp. 665–670. doi:https://doi.org/10.2514/3.26493 JSCRAG 0022-4650 LinkGoogle Scholar

  • [2] Walker J. L., “Range-Doppler Imaging of Rotating Objects,” IEEE Transactions on Aerospace and Electronics Systems, Vol. AES-16, No. 4, Jan. 1980, pp. 23–52. doi:https://doi.org/10.1109/TAES.1980.308875 0018-9251 CrossrefGoogle Scholar

  • [3] Hagfors T., “Mapping Planetary Surfaces by Radar,” Proceedings of the IEEE, Vol. 61, No. 9, 1973, pp. 1219–1225. doi:https://doi.org/10.1109/PROC.1973.9248 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [4] Hall D. T., Africano J. L., Lambert J. V. and Kervin P. W., “Time-Resolved I-Band Photometry of Calibration Spheres and NaK Droplets,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 910–919. doi:https://doi.org/10.2514/1.27464 JSCRAG 0022-4650 LinkGoogle Scholar

  • [5] DiMatteo J., Florakis D., Weichbrod A. and Milam M., “Proximity Operations Testing with a Rotating and Translating Resident Space Object,” AIAA Guidance, Navigation and Control Conference, AIAA Paper  2009-6293, Aug. 2009. LinkGoogle Scholar

  • [6] Lichter M. D. and Dubowsky S., “State, Shape, and Parameter Estimation of Space Objects from Range Images,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, IEEE Publications, Piscataway, NJ, April 2004, pp. 2974–2979. Google Scholar

  • [7] Young G. S. J. and Chellappa R., “3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 8, Aug. 1990, pp. 735–759. doi:https://doi.org/10.1109/34.57666 ITPIDJ 0162-8828 CrossrefGoogle Scholar

  • [8] Broida T. J. and Chellappa R., “Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, June 1991, pp. 497–513. doi:https://doi.org/10.1109/34.87338 ITPIDJ 0162-8828 CrossrefGoogle Scholar

  • [9] Kaasalainen M. and Torppa J., “Optimization Methods for Asteroid Lightcurve Inversion I: Shape Determination,” Icarus, Vol. 153, No. 1, Jan. 2001, pp. 24–36. doi:https://doi.org/10.1006/icar.2001.6673 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [10] Kaasalainen M. and Torppa J., “Optimization Methods for Asteroid Lightcurve Inversion II: The Complete Inverse Problem,” Icarus, Vol. 153, No. 1, Jan. 2001, pp. 37–51. doi:https://doi.org/10.1006/icar.2001.6674 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [11] Calef B., Africano J., Birge B., Hall D. and Kervin P., “Photometric Signature Inversion,” Proceedings of the International Society for Optical Engineering, Vol. 6307, SPIE, Bellingham, WA, Aug. 2006, Paper 11. Google Scholar

  • [12] Jah M. and Madler R., “Satellite Characterization: Angles and Light Curve Data Fusion for Spacecraft State and Parameter Estimation,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Vol. 49, Sept. 2007, Paper E49. Google Scholar

  • [13] Centinello F. J., “Six Degree of Freedom Estimation with Light Curve Data,” U.S. Air Force Research Lab., Space Vehicles Directorate, Albuquerque, NM, 2008. Google Scholar

  • [14] Jazwinski A. H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970, pp. 266–297, Chap. 8. Google Scholar

  • [15] Julier S. J., Uhlmann J. K. and Durrant-Whyte H. F., “A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control, Vol. 45, No. 3, March 2000, pp. 477–482. doi:https://doi.org/10.1109/9.847726 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [16] Gordon N. J., Salmond D. J. and Smith A. F. M., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation,” IEE Proceedings, Part F—Communications, Radar and Signal Processing, Vol. 140, No. 2, April 1993, pp. 107–113. doi:https://doi.org/10.1049/ip-f-2.1993.0015 0956375X CrossrefGoogle Scholar

  • [17] Wetterer C. J. and Jah M., “Attitude Estimation from Light Curves,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1648–1651. doi:https://doi.org/10.2514/1.44254 JGCDDT 0162-3192 LinkGoogle Scholar

  • [18] Shuster M. D., “A Survey of Attitude Representations,” Journal of the Astronautical Sciences, Vol. 41, No. 4, Oct.–Dec. 1993, pp. 439–517. JALSA6 0021-9142 Google Scholar

  • [19] Borderies N. and Longaretti P., “A New Treatment of the Albedo Radiation Pressure in the Case of a Uniform Albedo and of a Spherical Satellite,” Celestial Mechanics and Dynamical Astronomy, Vol. 49, No. 1, March 1990, pp. 69–98. doi:https://doi.org/10.1007/BF000485820923-2958 CrossrefGoogle Scholar

  • [20] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., McGraw–Hill, New York, 1997, pp. 574–578. Google Scholar

  • [21] Ashikmin M. and Shirley P., “An Anisotropic Phong Light Reflection Model,” Univ. of Utah TR-UUCS-00-014, Salt Lake City, UT, 2000. Google Scholar

  • [22] Crassidis J. L. and Markley F. L., “Unscented Filtering for Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003, pp. 536–542. doi:https://doi.org/10.2514/2.5102 JGCDDT 0162-3192 LinkGoogle Scholar

  • [23] Schaub H. and Junkins J. L., “Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters,” Journal of the Astronautical Sciences, Vol. 44, No. 1, Jan.–March 1996, pp. 1–20. JALSA6 0021-9142 Google Scholar

  • [24] Markley F. L., “Attitude Error Representations for Kalman Filtering,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 2, 2003, pp. 311–317. doi:https://doi.org/10.2514/2.5048 JGCDDT 0162-3192 LinkGoogle Scholar

  • [25] Brown R. G. and Hwang P. Y. C., Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., Wiley, New York, 1997, pp. 353–361. Google Scholar

  • [26] Stengel R. F., Optimal Control and Estimation, Dover, New York, 1994, pp. 402–407. Google Scholar

  • [27] Anderson B. D. O. and Moore J. B., Optimal Filtering, Dover, New York, 2005, pp. 267–279. Google Scholar

  • [28] Anderson B. D. O., Moore J. B. and Hawkes R. M., “Model Approximations via Prediction Error Identification,” Automatica, Vol. 14, No. 6, 1978, pp. 615–622. doi:https://doi.org/10.1016/0005-1098(78)90051-1 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [29] Alsuwaidan B. N., Crassidis J. L. and Cheng Y., “Generalized Multiple Model Adaptive Estimation Using an Autocorrelation Approach,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 3, 2011, pp. 2138–2151. doi:https://doi.org/10.1109/TAES.2011.5937288 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [30] Lam Q. M. and Crassidis J. L., “Evaluation of a Multiple Model Adaptive Estimation Scheme for Space Vehicle’s Enhanced Navigation Solution,” AIAA Guidance, Navigation and Control Conference, AIAA Paper  2007-6816, Aug. 2007. LinkGoogle Scholar

  • [31] Markley F. L., Crassidis J. L., Oshman Y. and Cheng Y., “Averaging Quaternions,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, pp. 1193–1197. doi:https://doi.org/10.2514/1.28949 JGCDDT 0162-3192 LinkGoogle Scholar