Skip to main content
Skip to article control options
No AccessEngineering Note

Logistical Analysis of a Flexible Human-and-Robotic Mars Exploration Campaign

Published Online:https://doi.org/10.2514/1.A32373
Free first page

References

  • [1] Human Exploration of Mars Design Reference Architecture 5.0,” NASA Mars Architecture Steering Group, SP-2009-566, 2009. Google Scholar

  • [2] Augustine N. R., Austin W. M., Chyba C., Kennel C. F., Bejmuk B. L., Crawley E. F., Lyles L. L., Chiao L., Greason J. and Ride S. K., Seeking a Human Spaceflight Program Worthy of a Great Nation, Independent Review of U.S. Human Spaceflight Effort, Washington, D.C., 2009. Google Scholar

  • [3] Sanford S. A., “The Power of Sample Return Missions: Stardust and Hayabusa,” The Molecular Universe, Proceedings of the 280th Symposium of the International Astronomical Union, Vol. 17, International Astronautical Union, Toledo, Spain, 2011, pp. 275–287. Google Scholar

  • [4] De Neufville R. and Scholtes S., Flexibility in Engineering Design, MIT Press, Cambridge, MA, 2011, p. 12. CrossrefGoogle Scholar

  • [5] Cunio P. M., Cohanim B. E., Corbin B. A., Han C. J., Lanford E. and Yue H. K., “Shared Human and Robotic Landing and Surface Exploration in the Neighborhood of Mars,” RASC-AL 2010 Design Competition [CD-ROM], National Institute of Aerospace, Hampton, VA, 2010. Google Scholar

  • [6] Yue H. K., “Propulsive and Logistical Feasibility of Alternative Future Human-Robotic Mars Exploration Architectures,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2011. Google Scholar

  • [7] Battin R. H., An Introduction to the Mathermatics and Methods of Astrodynamics, rev. ed., AIAA, Reston, VA, 1999, Chaps. 3, 4. LinkGoogle Scholar

  • [8] Grogan P., de Weck O. L., Jordan E. O. and Lee G. Y., Version 2.5 User’s Guide, Massachusetts Institute of Technology, Cambridge, MA, Sept. 2009. Google Scholar

  • [9] Grogan P.A Flexible, Modular Approach to Integrated Space Exploration Campaign Logistics Modeling, Simulation, and Analysis,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2010. Google Scholar

  • [10] Yue H. K., Corbin B. A., Han C. J., Michel W. X. and Hoffman J. A., “Integrated Model for a Cost Tradeoff Study Between a Planetary Network of Landers and Hoppers,” International Astronautical Congress, International Astronautical Federation, Paper  IAC-10-D1.3.8, Paris, France, 2010. Google Scholar

  • [11] Science Priorities for Mars Sample Return,” MEPAG Archive, MEPAG ND-SAG, Jet Propulsion Lab., California Inst. of Technology, Pasadena, CA, 2008. Google Scholar

  • [12] Galimov E. M., “Phobos Sample Return Mission: Scientific Substantiation,” Solar System Research, Vol. 44, No. 1, 2010, pp. 5–14. doi:https://doi.org/10.1134/S0038094610010028 SSYRAL 0038-0946 CrossrefGoogle Scholar

  • [13] Morgan L. L., “Orbital Tanker Designs and Operational Modes for Orbit Launch Programs,” AIAA Paper  1965-383, 1965. LinkGoogle Scholar

  • [14] Keaton P. W., “A Moon Base/Mars Base Transportation Depot,” Transportation Issues, Lunar and Planetary Inst., Houston, TX, 1985, pp. 141–154. Google Scholar

  • [15] O’Leary B., “International Manned Missions of Mars and the Resources of Phobos and Deimos,” Acta Astronautica, Vol. 26, No. 1, 1992, pp. 37–54. doi:https://doi.org/10.1016/0094-5765(92)90141-5 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [16] Griffin M. D., “NASA and the Business of Space,” American Astronautical Society 52nd Annual Conference, American Astronautical Society, Springfield, VA, Nov. 2005, pp. 15–16. Google Scholar

  • [17] Street D., “A Scalable Orbital Propellant Depot Design,” Guggenheim School of Aerospace Engineering, Master's of Science Special Problems Report, Georgia Inst. of Technology, Atlanta, GA, April 2006. Google Scholar

  • [18] Tanner C., Young J., Thompson R. and Wilhite A., “On-Orbit Propellant Resupply Options for Mars Exploration Architectures,” International Astronautical Congress, International Astronautical Federation Paper  IAC-06-D1.1.01, Paris, France, 2006. LinkGoogle Scholar

  • [19] Flaherty K., Grant M., Korzun A., Faure M., Steinfeldt B., Stahl B. and Wilhite A., “ESAS-Derived Earth Departure Stage Design for Human Mars Exploration,” Higher Education Programs, ESMD Space Grant Project, NASA, 2007. Google Scholar

  • [20] Zegler F. and Kutter B., “Evolving to a Depot-Based Space Transportation Architecture,” AIAA Space 2010 Conference & Exposition, AIAA Paper  2010-8638, 2010. LinkGoogle Scholar