Skip to main content
Skip to article control options
No AccessFull-Length Paper

Comparison of Statistical Estimation Techniques for Mars Entry, Descent, and Landing Reconstruction

Published Online:

Flight data from an entry, descent, and landing sequence can be used to reconstruct the vehicle's trajectory, aerodynamic coefficients, and the atmospheric profile experienced by the vehicle. Past Mars missions have not contained instrumentation that would allow for the separation of uncertainties in the atmosphere and the aerodynamic database. The 2012 Mars Science Laboratory took measurements of the pressure distribution on the aeroshell forebody during entry and allows freestream atmospheric conditions to be partially observable. Methods to estimate the flight performance statistically using onboard measurements are demonstrated here through the use of simulated Mars data. A range of statistical estimators, specifically the extended Kalman filter and unscented Kalman filter, are used to demonstrate which estimator best quantifies the states and the uncertainties in the flight parameters. The techniques demonstrated herein are planned for application to the Mars Science Laboratory flight dataset.


  • [1] Ingolby R. N., Michel F. C., Flaherty T. M., Doty M. G., Preston B., Villyard K. W. and Steele R. D., “Entry Data Analysis for Viking Landers 1 and 2,” NASA CR-159388, 1976. Google Scholar

  • [2] Spencer D., Blanchard R., Braun R., Kallemeyn P. and Thurman S., “Mars Pathfinder Entry, Descent, and Landing Reconstruction,” Journal of Spacecraft and Rockets, Vol. 36, No. 3, 1999, pp. 357–366. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [3] Blanchard R., “Entry Descent and Landing Trajectory and Atmosphere Reconstruction for the Mars Exploration Rovers Missions A and B,” George Washington Univ., NASA-Jet Propulsion Lab. TR-CCNS20568F, Washington, DC, 2008. Google Scholar

  • [4] Desai P. N., Prince J. L., Queen E. M., Schoenenberger M., Cruz J. R. and Grover M. R., “Entry, Descent, and Landing Performance of the Mars Phoenix Lander,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 798–808.doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [5] Blanchard R. C. and Desai P. N., “Mars Phoenix Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 809–821.doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [6] Withers P., Towner M., Hathi B. and Zarneckbi J., “Analysis of Entry Accelerometer Data: A Case Study of Mars Pathfinder,” Planetary and Space Science, Vol. 51, Nos. 9–10, 2003, pp. 541–561. doi: PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [7] Withers P. and Smith M., “Atmospheric Entry Profiles from the Mars Exploration Rovers Spirit and Opportunity,” Icarus, Vol. 185, No. 1, 2006, pp. 133–142. doi: ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [8] Withers P. and Catling D. C., “The Phoenix Atmospheric Structure Experiment (ASE): Data Processing and Scientific Results,” 7th International Planetary Probe Workshop, Barcelona, Spain, 2010. Google Scholar

  • [9] Striepe S., Way D., Dwyer A. and Balaram J., “Mars Science Laboratory Simulations for Entry, Descent, and Landing,” Journal of Spacecraft and Rockets, Vol. 43, No. 2, 2006, pp. 311–323.doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [10] Regan F. J. and Anandakrishnan S. M., Dynamics of Atmospheric Re-Entry, AIAA, Reston, VA, 1993, pp. 179–280. LinkGoogle Scholar

  • [11] Euler E., Adams G. and Hopper F., “Design and Reconstruction of the Viking Lander Descent Trajectories,” Journal of Guidance and Control, Vol. 1, No. 5, 1978, pp. 372–378. doi: JGCODS 0162-3192 LinkGoogle Scholar

  • [12] Schofield J. T., Barnes J. R., Crisp D., Haberle R. M., Larsen S., Magalhaes J. A., Murphy J. R., Seiff A. and Wilson G., “The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment,” Science, Vol. 278, No. 5344, 1997, pp. 1752–1758. doi: SCIEAS 0036-8075 CrossrefGoogle Scholar

  • [13] Milos F. S., Chen Y., Congdon W. M. and Thornton J. M., “Mars Pathfinder Entry Temperature Data, Aerothermal Heating, and Heatshield Material Response,” Journal of Spacecraft and Rockets, Vol. 36, No. 3, 1999, pp. 380–391.doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [14] Gazarik M., Wright M., Little A., Cheatwood F., Herath J., Munk M., Novak J. and Martinez E., “Overview of the MEDLI Project,” IEEE Aerospace Conference Proceedings, IEEE, Big Sky, MT, 2008. Google Scholar

  • [15] Seiff A. and Reese D.,, “Use of Entry Vehicle Response to Define the Properties of the Mars Atmosphere,” NASA TM-X-56125, 1965. Google Scholar

  • [16] Hopper F., “Trajectory, Atmosphere, and Wind Reconstruction from Viking Measurements,” American Astronautical Society Paper  75-068, 1975. Google Scholar

  • [17] Blanchard R. and Walberg G., “Determination of the Hypersonic-Continuum/Rarefied-Flow Drag Coefficient of the Viking Lander Capsule 1 Aeroshell from Flight Data,” NASA TP-1793, 1980. Google Scholar

  • [18] Pruett C., Wolf H., Heck M. and Siemers P., “Innovative Air Data System for the Space Shuttle Orbiter,” Journal of Spacecraft and Rockets, Vol. 20, No. 1, 1983, pp. 61–69. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [19] Edquist K. T., Dyakonov A. A., Wright M. J. and Tang C. Y., “Aerothermodynamic Design of the Mars Science Laboratory Heatshield,” AIAA Paper  2009-4075, 2009. LinkGoogle Scholar

  • [20] Mahzari M., Cozmuta I., Clark I. G. and Braun R. D., “An Inverse Parameter Estimation Methodology for the Analysis of Aeroheating and Thermal Protection System Experimental Data,” AIAA Paper  2011-4027, 2011. LinkGoogle Scholar

  • [21] Striepe S. A., Powell R. W., Desai P. N., Queen E. M., Brauer G. L., Cornick D. E., Olson D. W., Peterson F. M., Stevenson R., Engel M. C., Marsh S. M. and Gromko A. M., “Program To Optimize Simulated Trajectories (POST II): Utilization Manual,” Vol. 2, Ver. 1.1.6.G., 2004. Google Scholar

  • [22] Christian J., Verges A. and Braun R., “Statistical Reconstruction of Mars Entry, Descent, and Landing Trajectories and Atmospheric Profiles,” AIAA Paper  2007-6192, 2007. LinkGoogle Scholar

  • [23] Dutta S. and Braun R. D., “Mars Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction,” AIAA Paper  2010-1210, 2010. LinkGoogle Scholar

  • [24] Dutta S., Clark I. G., Russell R. P. and Braun R. D., “Statistical Entry, Descent and Landing Performance Reconstruction of the Mars Phoenix Lander,” 8th International Planetary Probe Workshop, Portsmouth, VA, 2011. Google Scholar

  • [25] Karlgaard C. D., Beck R. E., O’Keefe S. A., Siemers P. M., White B. A., Engelund W. C. and Munk M. M., “Mars Entry Atmospheric Data System Modeling and Algorithm Development,” AIAA Paper  2009-3916, 2009. Google Scholar

  • [26] Wells G. W. and Braun R. D., “Reconstruction of the Spirit Mars Exploration Rover Entry, Descent and Landing Performance,” International Atmospheric Reentry Association Days Proceedings 3-2008-16, 2008. Google Scholar

  • [27] Wells G., “A Comparison of Multiple Techniques for the Reconstruction of Entry, Descent, and Landing Trajectories and Atmospheres,” Ph.D. Dissertation, Dept. of Aerospace Engineering, Georgia Inst. of Technology, Atlanta, GA, 2011. Google Scholar

  • [28] Julier S., Uhlmann J. and Durrant-Whyte H., “A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control, Vol. 45, No. 3, 2000, pp. 477–482. doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [29] Vinh N. X., Busemann A. and Culp R. D., Hypersonic and Planetary Entry Flight Mechanics, Univ. of Michigan Press, Ann Arbor, MI, 1980, pp. 100–107. Google Scholar

  • [30] Etkin B., Dynamics of Atmospheric Flight, Dover, Meneola, NY, 2000, pp. 104–120. Google Scholar

  • [31] Kuipers J., Quaternions and Rotation Sequences, Princeton Univ. Press, Princeton, NJ, 1999, pp. 155–176. CrossrefGoogle Scholar

  • [32] Jazwinski A., Stochastic Processes and Filtering Theory, Academic Press, San Diego, CA, 1970, pp. 194–329. Google Scholar

  • [33] Tapley B. D., Schutz B. E. and Born G. H., Statistical Orbit Determination, Elsevier, Burlington, MA, 2004, pp. 199–210. Google Scholar

  • [34] Zarchan P. and Musoff H., Fundamentals of Kalman Filtering, A Practical Approach, AIAA, Reston, VA, 2000, pp. 257–292. Google Scholar

  • [35] Simon D., Optimal State Estimation, Wiley-Interscience, Hoboken, NJ, 2006, pp. 433–460. CrossrefGoogle Scholar

  • [36] Lee D. and Alfriend K. T., “Sigma Point Filtering for Sequential Orbit Estimation and Prediction,” Journal of Spacecraft and Rockets, Vol. 44, No. 2, 2007, pp. 388–398. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [37] Nørgaard M., Poulsen N. K. and Ravn O., “New Developments in State Estimation for Nonlinear Systems,” Automatica, Vol. 36, No. 11, 2000, pp. 1627–1638. doi: ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [38] Fraser D. and Potter J., “The Optimum Linear Smoothers as a Combination of Two Optimum Linear Filters,” IEEE Transactions on Automatic Control, Vol. 14, No. 8, 1969, pp. 387–390.doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [39] Bell B. M., “The Iterated Kalman Smoother as a Gauss–Newton Method,” SIAM Journal on Optimization, Vol. 4, No. 3, 1994, pp. 626–636. doi: SJOPE8 1095-7189 CrossrefGoogle Scholar