Skip to main content
Skip to article control options
No AccessSurvey Paper

Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization

Published Online:https://doi.org/10.2514/1.A32598
Free first page

References

  • [1] Pezdirtz G. F., “Erectable Space Structures—ECHO Satellites,” NASA N62-12545, 1962. Google Scholar

  • [2] Freeland R. E., Bilyeu G. D., Veal G. R., Steiner M. D. and Carson D. E., “Large Inflatable Deployable Antenna Flight Experiment Results,” Acta Astronautica, Vol. 41, Nos. 4–10, 1997, pp. 267–277. doi:https://doi.org/10.1016/S0094-5765(98)00057-5 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [3] Guidanean K. and Lichodziejewski D., “An Inflatable Truss Structure Based on New Sub-Tg Polyurethane Composites,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1593, April 2002. LinkGoogle Scholar

  • [4] Cadogan D. P., Lin J. K. and Grahne M. S., “Inflatable Solar Array Technology,” 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  1999-1075, Jan. 1999. LinkGoogle Scholar

  • [5] Lichodziejewski D., Derbès B., West J., Belvin K. and Pappa R., “Bringing an Effective Solar Sail Design Toward TRL 6,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2003-4659, July 2003. LinkGoogle Scholar

  • [6] Douglas M. V., “Module for an Articulated Stowable and Deployable Mast,” U.S. Patent 5,267,424, 1993. Google Scholar

  • [7] Rimrott F. P. J. and Fritsche G., “Fundamentals of STEM Mechanics,” Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 1998, pp. 321–333. Google Scholar

  • [8] Iqbal K., Pellegrino S. and Daton-Lovett A., “Bi-Stable Composite Slit Tubes,” IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 1998, pp. 153–162. Google Scholar

  • [9] Thomson M. W., “Deployable and Retractable Telescoping Tubular Structure Development,” Proceedings of the 28th Aerospace Mechanisms Symposium, Cleveland, OH, May 1994, pp. 323–338. Google Scholar

  • [10] Murphey T. W., “Booms and Trusses,” Recent Advances in Gossamer Spacecraft, edited by Jenkins C. H. M., Vol. 212, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2006, pp. 1–44. Google Scholar

  • [11] Pappa R. S., Lassiter J. O. and Ross B. P., “Structural Dynamics Experimental Activities in Ultralightweight and Inflatable Space Structures,” Journal of Spacecraft and Rockets, Vol. 40, No. 1, 2003, pp. 15–23. doi:https://doi.org/10.2514/2.3934 JSCRAG 0022-4650 LinkGoogle Scholar

  • [12] Grahne M. S. and Cadogan D. P., “Deployment Control Mechanisms and Packaging Methodologies for Inflatable and Membrane Structures,” Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, edited by Jenkins C. H. M., Vol. 191, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, pp. 417–431. Google Scholar

  • [13] Natori M. C., Katsumata N. and Yamakawa H., “Membrane Modular Space Structure Systems and Deployment Characteristics of Their Inflatable Tube Elements,” 51st AIAA Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2010-2909, April 2010. AbstractGoogle Scholar

  • [14] Katsumata N., Fujii R., Natori M. C. and Yamakawa H., “Membrane Space Structure Models with Inflatable Tubes,” Proceedings of the 27th International Symposium on Space Technology and Science, Tsukuba, Japan, Paper  2011-c-38, July 2009. Google Scholar

  • [15] Steele C. R. and Fay J. P., “Inflation of Rolled Tubes,” Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 2000, pp. 393–403. Google Scholar

  • [16] Fay J. P. and Steele C. R., “Forces for Rolling and Asymmetric Pinching of Pressurized Cylindrical Tubes,” Journal of Spacecraft and Rockets, Vol. 36, No. 4, 1999, pp. 531–537. doi:https://doi.org/10.2514/3.27196 JSCRAG 0022-4650 LinkGoogle Scholar

  • [17] Fang H. and Lou M., “Deployment Study of a Self-Rigidizable Inflatable Boom,” Journal of Spacecraft and Rockets, Vol. 43, No. 1, 2006, pp. 25–30. doi:https://doi.org/10.2514/1.3283 JSCRAG 0022-4650 LinkGoogle Scholar

  • [18] Seffen K. A. and Pellegrino S., “Deployment Dynamics of Tape-Springs,” Proceedings of the Royal Society of London A, Vol. 455, No. 1983, 1999, pp. 1003–1048. doi:https://doi.org/10.1098/rspa.1999.0347 PRLAAZ 0080-4630 CrossrefGoogle Scholar

  • [19] Wang J. T. and Johnson A. R., “Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures,” NASA TM-2003-212410, 2003. Google Scholar

  • [20] Katsumata N., Natori M. C. and Yamakawa H., “Folding and Deployment Analyses of Inflatable Structures,” Proceedings of the 28th International Symposium on Space Technology and Science, Paper  2011-c-38, Okinawa, Japan, June 2011. Google Scholar

  • [21] Satou Y. and Furuya H., “Mechanical Properties of Wrapping Fold Wrinkles in Large Space Membrane,” Proceedings of the 28th International Symposium on Space Technology and Science (28th ISTS), Paper  2011-c-32, Okinawa, Japan, June 2011. Google Scholar

  • [22] Freeland R. E., Bilyeu G. D. and Veal G. R., “Development of Flight Hardware for a Large, Inflatable-Deployable Antenna Experiment,” Acta Astronautica, Vol. 38, No. 4–8, 1996, pp. 251–260. doi:https://doi.org/10.1016/0094-5765(96)00030-6 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [23] Smith S. W. and Main J. A., “Modeling the Deployment of Inflatable Space Structures,” Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, edited by Jenkins C. H. M., Vol. 191, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, pp. 203–237. Google Scholar

  • [24] Breukels J. and Ockels W., “Analysis of Complex Inflatable Structures Using a Multi-Body Dynamics Approach,” 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2008-2284, April 2008. LinkGoogle Scholar

  • [25] Main J., Peterson S. and Strauss A., “Beam-Type Bending of Space-Based Inflated Membrane Structures,” Journal of Aerospace Engineering, Vol. 8, No. 2, 1995, pp. 120–125. doi:https://doi.org/10.1061/(ASCE)0893-1321(1995)8:2(120) CrossrefGoogle Scholar

  • [26] Salama M., Kuo C. P. and Lou M., “Simulation of Deployment Characteristics of Inflatable Structures,” AIAA Journal, Vol. 38, No. 12, 2000, pp. 2277–2283. doi:https://doi.org/10.2514/2.896 AIAJAH 0001-1452 LinkGoogle Scholar

  • [27] Miyazaki Y. and Uchiki M., “Deployment Dynamics of Inflatable Tube,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1254, April 2002. LinkGoogle Scholar

  • [28] Wu W. and You Z., “Modelling Rigid Origami with Quaternions and Dual Quaternions,” Proceedings of the Royal Society A, Vol. 466, No. 2119, 2010, pp. 2155–2174. doi:https://doi.org/10.1098/rspa.2009.0625 CrossrefGoogle Scholar

  • [29] Senda K., Oda T., Ohta S., Igaras Y., Watanabe A., Hori T., Ito H., Tsunoda H. and Watanabe K., “Deploy Experiment of Inflatable Tube Using Work Hardening,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2006-1808, May 2006. LinkGoogle Scholar

  • [30] You Z. and Kuribayashi K., “Expandable Tubes with Negative Poisson’s Ratio and Their Application in Medicine,” Origami 4: 4th International Meeting of Origami Science, Mathematics and Education, edited by Lang R. J., A K Peters, Natick, MA, 2009, pp. 117–127. CrossrefGoogle Scholar

  • [31] Guest S. D. and Pellegrino S., “The Folding of Triangulated Cylinders, Part 1: Geometric Considerations,” Journal of Applied Mechanics, Vol. 61, No. 4, 1994, pp. 773–777. JAMCAV 0021-8936 CrossrefGoogle Scholar

  • [32] Guest S. D. and Pellegrino S., “The Folding of Triangulated Cylinders, Part 2: The Folding Process,” Journal of Applied Mechanics, Vol. 61, No. 4, 1994, pp. 778–783. JAMCAV 0021-8936 CrossrefGoogle Scholar

  • [33] Miura K., “Proposition of Pseudo-Cylindrical Concave Polyhedral Shells,” Inst. of Space and Aeronautical Science, Rept.  442, Univ. of Tokyo, Tokyo, 1969. Google Scholar

  • [34] Johnson W., Soden P. D. and Al-Hassani S. T. S., “Inextensional Collapse of Thin-Walled Tubes Under Axial Compression,” Journal of Strain Analysis for Engineering Design, Vol. 12, No. 4, 1977, pp. 317–330. doi:https://doi.org/10.1243/03093247V124317 JSADDZ 0309-3247 CrossrefGoogle Scholar

  • [35] Tarnai T., “Folding of Uniform Plane Tesselations,” Origami Science & Art, Proceedings of the 2nd International Meeting of Origami Science and Scientific Origami, edited by Miura K., Seian Univ. of Art and Design, Otsu, Shiga, Japan, Nov.–Dec. 1994, pp. 83–91. Google Scholar

  • [36] Hunt G. W. and Ario I., “Twist Buckling and the Foldable Cylinder: An Exercise in Origami,” International Journal of Non-Linear Mechanics, Vol. 40, No. 6, 2005, pp. 833–843. doi:https://doi.org/10.1016/j.ijnonlinmec.2004.08.011 IJNMAG 0020-7462 CrossrefGoogle Scholar

  • [37] Kane N. R., “Mathematically Optimized Family of Ultra Low Distortion Bellow Fold Patterns,” U.S. Patent 6,054,194, 2000. Google Scholar

  • [38] You Z. and Cole N., “Self-Locking Bi-Stable Deployable Booms,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2006-1685, May 2006. LinkGoogle Scholar

  • [39] MacNeal R. H. and Robbins W. M., “Tensile Properties of a Tape with a Transverse Crease,” Astro Research Corp., ARC-R-241, Santa Barbara, California, 1967. Google Scholar

  • [40] Murphey T. W., “The Constitutive Modeling of Thin Films with Random Material Wrinkles,” 19th AIAA Applied Aerodynamics Conference, AIAA Paper  2001-1347, June 2001. LinkGoogle Scholar

  • [41] Papa A. and Pellegrino S., “Systematically Creased Thin-Film Membrane Structures,” Journal of Spacecraft and Rockets, Vol. 45, No. 1, 2008, pp. 10–18. doi:https://doi.org/10.2514/1.18285 JSCRAG 0022-4650 LinkGoogle Scholar

  • [42] Woo K., Nandurkar K. and Jenkins C., “Effective Modulus of Creased Thin Membranes,” Journal of Spacecraft and Rockets, Vol. 45, No. 1, 2008, pp. 19–26. doi:https://doi.org/10.2514/1.29282 JSCRAG 0022-4650 LinkGoogle Scholar

  • [43] Hayase R., Kamemura H., Inoue S. and Miyazaki Y., “A Study on Mechanical Model of Crease of Membrane,” Proceedings of the 28th International Symposium on Space Technology and Science, Paper  2011-c-31, Ginowan City, Japan, June 2011. Google Scholar

  • [44] Guest S. D. and Pellegrino S., “Inextensional Wrapping of Flat Membranes,” Proceedings of the 1st International Conference on Structural Morphology, edited by Motro R. and Wester T., Montpellier, France, Sept. 1992, pp. 203–215. Google Scholar

  • [45] Watanabe H., Natori M. C., Okuizumi N. and Higuchi K., “Folding of a Circular Membrane Considering the Thickness,” ISAS Proceedings of 14th Workshop on Astrodynamics and Flight Mechanics 2004: A Collection of Technical Papers, 2005, pp. 19–24. Google Scholar

  • [46] Sogame A. and Furuya H., “Conceptual Study on Cylindrical Deployable Space Structures,” Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 2000, pp. 383–392. Google Scholar

  • [47] Kuribayashi K., “A Novel Foldable Stent Graft,” Ph.D. Thesis, Univ. of Oxford, Oxford, England, U.K., 2004. Google Scholar

  • [48] Tachi T., “Generalization of Rigid Foldable Quadrilateral Mesh Origami,” Journal of the International Association for Shell and Spatial Structures, Vol. 50, No. 3, 2009, pp. 173–179. Google Scholar

  • [49] Nojima T., “Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami,” JSME International Journal Series C, Vol. 45, No. 1, 2002, pp. 364–370. doi:https://doi.org/10.1299/jsmec.45.364 CrossrefGoogle Scholar

  • [50] Coppa A. P. A., “Family of Rigid Shell Structures, Self-Deployable from Folded Configurations of Small Initial Volume,” 9th AIAA/ASME Structures, Structural Dynamics and Materials Conference, AIAA Paper  1968-0359, April 1968. LinkGoogle Scholar

  • [51] Tsunoda H., Senbokuya Y. and Watanabe M., “Deployment Characteristics Evaluation of Inflatable Tubes with Polygon Folding Under Airplane Microgravity Environment,” Space Technology, Vol. 25, Nos. 3–4, 2005, pp. 127–137. SPTEE8 0892-9270 Google Scholar

  • [52] Guenat H. and Le Couls O., “Ultra-Light Structures: Status of Development and Potential Applications,” ESA Techno/Innovation Days, 2010. Google Scholar

  • [53] Lacour D., Defoort B., Peypoudat V. and Gautrias C., “Control Device for Deployment of Inflatable Structures,” U.S. Patent 7,740,203, 2010. Google Scholar

  • [54] Schenk M., Kerr S. G., Smyth A. M. and Guest S. D., “Inflatable Cylinders for Deployable Space Structures,” Proceedings of the 1st International Conference Transformables 2013, Seville, Spain, Sept. 2013. Google Scholar

  • [55] Miura K., “Method of Packaging and Deployment of Large Membranes in Space,” Inst. of Space and Astronautical Science, Rept.  618, Tokyo, 1985. Google Scholar

  • [56] Kyriakides S., “Propagating Instabilities in Structures,” Advances in Applied Mechanics, Vol. 30, 1993, pp. 67–189. doi:https://doi.org/10.1016/S0065-2156(08)70174-1 AAMCAY 0065-2156 CrossrefGoogle Scholar

  • [57] Guest S. D. and Pellegrino S., “The Folding of Triangulated Cylinders, Part 3: Experiments,” Journal of Applied Mechanics, Vol. 63, No. 1, 1996, pp. 77–83. doi:https://doi.org/10.1115/1.2787212 JAMCAV 0021-8936 CrossrefGoogle Scholar

  • [58] Barker R. J. P. and Guest S. D., “Inflatable Triangulated Cylinders,” Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 2000, pp. 17–26. Google Scholar

  • [59] Tachi T., “One-DOF Cylindrical Deployable Structures with Rigid Quadrilateral Panels,” Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, edited by Domingo A. and Lazaro C., Polytechnic Univ. of Valencia, Valencia, Spain, Sept.–Oct. 2009, pp. 2295–2305. Google Scholar

  • [60] Miura K. and Tachi T., “Synthesis of Rigid-Foldable Cylindrical Polyhedra,” Journal of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry), Special Issue for the Festival-Congress, Gmünd, Austria, 2010, pp. 204–213. Google Scholar

  • [61] Yasuda H., Yein T., Tachi T., Miura K. and Taya M., “Folding Behaviour of Tachi-Miura Polyhedron Bellows,” Proceedings of the Royal Society A, Vol. 469, No. 2159, 2013, Paper 20130351. doi:https://doi.org/10.1098/rspa.2013.0351 CrossrefGoogle Scholar

  • [62] Wang K. and Chen Y., “Folding a Patterned Cylinder by Rigid Origami,” Origami 5: 5th International Meeting of Origami Science, Mathematics, and Education, edited by Wang-Iverson P., Lang R. J. and Yim M., CRC Press, Boca Raton, FL, 2011, pp. 265–276. CrossrefGoogle Scholar

  • [63] Wu W., “Rigid Origami: Modelling, Application in Pre-Folded Cylinders and Manufacturing,” Ph.D. Thesis, Univ. of Oxford, Oxford, England, U.K., 2010. Google Scholar

  • [64] Veal G., Palisoc A. and Derbès W., “Deployable Inflatable Boom and Methods for Packaging and Deploying a Deployable Inflatable Boom,” U.S. Patent Application 6,786,456, 2004. Google Scholar

  • [65] Palisoc A. L., Redell F. H. and Andersen G., “Deployment and Structural Support of Space Membrane Optics System Using Rigidizable Conical Booms,” Proceedings of the 9th Biennial ASCE Aerospace Division International Conference, American Society of Civil Engineers, 2004, pp. 946–953. Google Scholar

  • [66] Garbe G. P., Wie B., Murphy D., Ewing A., Lichodziejewsi L., Derbès B., Campbell B., Wang J., Taleghani B., Canfield S. L., Beard J. W. and Peddieson J., “Solar Sail Propulsion Technology Development,” Recent Advances in Gossamer Spacecraft, Vol. 212, Progress in Astronautics and Aeronautics, edited by Jenkins C. H. M., AIAA, Reston, VA, 2006, pp. 191–261. Google Scholar

  • [67] Caffrey M., Katko K., Nelson A., Palmer J., Robinson S., Roussel-Dupre D., Salazar A., Wirthlin M., Howes W. and Richins D., “The Cibola Flight Experiment,” Proceedings of the 23rd Annual AIAA/USU Conference on Small Satellites, Paper  SSC09-III-6, Aug. 2009. Google Scholar

  • [68] Johnson C. E., “A Study on the Use of an Antenna/Homing Guide for Lunar Base Communication/Navigation Systems,” NASA CR-88688, 1966. Google Scholar

  • [69] Li B., Tan D., Yang Z. and Wen J., “Deployment Simulation and Comparison of Inflatable Antenna Beam with Different Folded Configurations,” International Journal of Applied Electromagnetics and Mechanics, Vol. 33, Nos. 3–4, pp. 1513–1527, 2010. CrossrefGoogle Scholar

  • [70] Veldman S. L., “Design and Analysis Methodologies for Inflated Beams,” Ph.D. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2005. Google Scholar

  • [71] Cadogan D. P., “Rigidization Mechanisms and Materials,” Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, edited by Jenkins C. M., Vol. 191, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, pp. 257–475. Google Scholar

  • [72] Cadogan D. P. and Scarborough S. E., “Rigidizable Materials for Use in Gossamer Space Inflatable Structures,” 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2001-1417, April 2001. LinkGoogle Scholar

  • [73] Bernasconi M. C. and Reibaldi G. G., “Inflatable, Space-Rigidized Structures: Overview of Applications and Their Technology Impact,” Acta Astronautica, Vol. 14, 1986, pp. 455–465. doi:https://doi.org/10.1016/0094-5765(86)90146-3 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [74] May C. A. and Wereta A., “Process Identification Study for Space Cured Composite Structures,” NASA CR-158942, 1978. Google Scholar

  • [75] Forbes F. W., “Expandable Structures for Space Applications,” U.S. Air Force Aero Propulsion Lab., AD0607541, Wright-Patterson Air Force Base, OH, 1964. CrossrefGoogle Scholar

  • [76] Defoort B., Peypoudat V., Bernasconi M. C., Chuda K. and Coqueret X., “Recent Advances in the Rigidization of Gossamer Structures,” Textile Composites and Inflatable Structures, Vol. 3, Computational Methods in Applied Sciences, Springer, Dordrecht, The Netherlands, 2005, pp. 259–283. CrossrefGoogle Scholar

  • [77] Freeland R. E., Bilyeu G. D., Veal G. R. and Mikulas M. M., “Inflatable Deployable Space Structures Technology Summary,” Proceedings of the 49th International Astronautical Congress, International Astronautical Federation, Melbourne, Australia, Paper  IAF-98-I.5.01, Sept.–Oct. 1998. Google Scholar

  • [78] Lou M. C. and Feria V. A., “Development of Space Inflatable/Rigidizable Structures Technology,” Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, edited by Pellegrino S. and Guest S. D., Kluwer Academic, Dordrecht, The Netherlands, Sept. 1998, pp. 251–259. Google Scholar

  • [79] Keller L. B. and Schwartz S., “Rigidization Techniques for Integrally Woven Composite Constructions,” Hughes Aircraft, ML-TDR-64-299, Culver City, CA, 1964. CrossrefGoogle Scholar

  • [80] Schwartz S. and Bagby J., “Rigidized Inflatable Solar Energy Concentrators,” NASA CR-254, 1964. Google Scholar

  • [81] Lester D., Warner M. and Blair M., “Foam Inflated Rigidized Structures for Space Applications,” Proceedings of the 1993 Joint Army Navy NASA Air Force (JANNAF) Propulsion Meeting, Vol. 2, JANNAF Interagency Propulsion Committee, Nov. 1993, pp. 243–251. Google Scholar

  • [82] Lester D. M. and Cannon D. M., “Foam Inflated Rigidized Truss Structure Developed for an SRS Technologies Solar Concentrator,” Thiokol Corp., AD-A409527, Brigham City, UT, 1996. Google Scholar

  • [83] Allred R. E., Hoyt A. E., McElroy P. M., Scarborough S. and Cadogan D. P., “UV Rigidizable Carbon-Reinforced Isogrid Inflatable Booms,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1202, April 2002. LinkGoogle Scholar

  • [84] Hoyt A. E., Harrah L. A., Allred R. E. and McElroy P. M., “Rigidization-on-Command ROC Resin Development for Lightweight Isogrid Booms with MLI,” Proceedings of the 33rd International Conference on Environmental Systems (ICES), Paper  ICES-2003-01-2342, Vancouver, BC, Canada, 2003. Google Scholar

  • [85] Mahias R., Defoort B., Mille M., Coqueret X. and Langlois S., “Polymerization of Composite Materials in Free Space Environment,” Proceedings of the 11th International Symposium on Materials in Space Environment, Paper  IAC-04-I.5.08, Aix en Provence, France, Sept. 2009. Google Scholar

  • [86] Defoort B., Lacour D. and Le Couls O., “Assembly of Prepregs for Producing Structures, for Example Ones Which Deploy Through Inflation,” U.S. Patent Application 20,100,166,988, 2010. Google Scholar

  • [87] Reiss P., Breunig E., Zimmerhakl P., Newie N. and Zeiner A., “Investigating New Space Structures with the Focus Experiment,” Proceedings of 20th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Hyre, France, May 2011. Google Scholar

  • [88] Reibaldi G. G. and Bernasconi M. C., “QUASAT Program: The ESA Reflector,” Acta Astronautica, Vol. 15, No. 3, 1987, pp. 181–187. doi:https://doi.org/10.1016/0094-5765(87)90018-X AASTCF 0094-5765 CrossrefGoogle Scholar

  • [89] Woods A. R. and Bernasconi M. C., “The OUR-Space Peace Sculpture: Introducing a Cultural Dimension into the Space Environment,” Proceedings of the 40th Congress of the International Astronautical Federation, Paper  IAA-89-673, Malaga, Spain, Oct. 1989. Google Scholar

  • [90] Veldman S. L. and Vermeeren C. A. J. R., “Inflatable Structures in Aerospace Engineering—An Overview,” Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, European Space Agency, Noordwijk, The Netherlands, Nov.–Dec. 2000, pp. 93–98. Google Scholar

  • [91] Cadogan D., Grahne M. and Mikulas M., “Inflatable Space Structures: A New Paradigm for Space Structure Design,” Proceedings of the 49th International Astronautical Congress, Paper  IAF-98-I.1.02, Melbourne, Australia, Sept.–Oct. 1998. Google Scholar

  • [92] Sandy C. R., “Next Generation Space Telescope Inflatable Sunshield Development,” IEEE Aerospace Conference Proceedings, Vol. 6, IEEE Publ., Piscataway, NJ, March 2000, pp. 505–519. Google Scholar

  • [93] Sarles S. A. and Leo D. J., “Consolidation of U-Nyte Epoxy-Coated Carbon-Fiber Composites via Temperature-Controlled Resistive Heating,” Journal of Composite Materials, Vol. 42, No. 24, 2008, pp. 2551–2566. doi:https://doi.org/10.1177/0021998308097197 JCOMBI 0021-9983 CrossrefGoogle Scholar

  • [94] Lichodziejewski D., Cravey R. and Hopkins G., “Inflatably Deployed Membrane Waveguide Array Antenna for Space,” 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2003-1649, April 2003. LinkGoogle Scholar

  • [95] Lichodziejewski D., Derbès B., Reinert R., Belvin K., Slade K. and Mann T., “Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail,” 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper  2004-1507, April 2004. LinkGoogle Scholar

  • [96] Redell F. H., Lichodziejewski D., Kleber J. and Greschik G., “Testing of an Inflation-Deployed Sub-Tg Rigidized Support Structure for a Planar Membrane Waveguide Antenna,” 46th AIAA Structures, Structural Dynamics and Materials Conference, AIAA Paper  2005-1880, April 2005. LinkGoogle Scholar

  • [97] Johnson L., Young R. M. and Montgomery E. E., “Recent Advances in Solar Sail Propulsion Systems at NASA,” Acta Astronautica, Vol. 61, Nos. 1–6, 2007, pp. 376–382. doi:https://doi.org/10.1016/j.actaastro.2007.01.047 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [98] Lichodziejewski D., Derbès B. and Mann T., “Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Rigidizable Solar Sail System,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper  2005-2122, April 2005. LinkGoogle Scholar

  • [99] Mann T., Behun V., Lichodziejewski D., Derbès B. and Sleight D., “Ground Testing a 20-Meter Inflation Deployed Solar Sail,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2006-1707, May 2006. LinkGoogle Scholar

  • [100] Redell F. H. and Lichodziejewski D., “Power-Scalable Inflation-Deployed Solar Arrays,” 45th AIAA Structures, Structural Dynamics and Materials Conference, AIAA Paper  2004-1572, April 2004. LinkGoogle Scholar

  • [101] Moeller C. R., “Design and Ground-Testing of an Inflatable-Rigidizable Structure Experiment in Preparation for Space Flight,” M.S. Thesis, U.S. Air Force Inst. of Technology, Wright-Patterson Air Force Base, OH, 2005. Google Scholar

  • [102] Adetona O., Keel L. H., Horta L. G., Cadogan D. P., Sapna G. H. and Scarborough S. E., “Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1451, April 2002. Google Scholar

  • [103] Cadogan D. P., Lin J. K. and Grahne M. S., “The Development of Inflatable Space Radar Reflectarrays,” 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  1999-1517, April 1999. LinkGoogle Scholar

  • [104] Lin J. K. H., Sapna G. H., Cadogan D. P. and Scarborough S. E., “Inflatable Rigidizable Isogrid Boom Development,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1297, April 2002. LinkGoogle Scholar

  • [105] Cadogan D. P., Scarborough S. E., Lin J. K. and Sapna G. H., “Shape Memory Composite Development for Use in Gossamer Space Inflatable Structures,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1372, April 2002. LinkGoogle Scholar

  • [106] Staugaitis C. L. and Kobren L., “Mechanical and Physical Properties of the Echo II Metal-Polymer Laminate,” NASA TN-D-3409, 1966. Google Scholar

  • [107] O’Sullivan W. J., “Self Supporting Space Vehicle,” U.S. Patent 2,996,212, 1961. Google Scholar

  • [108] Keating C. V. and Woerner G. M., “Temperature Control of the Explorer IX Satellite,” NASA TN-D-1369, 1962. Google Scholar

  • [109] NASA Facts: Explorer XIX, the Air Density Satellite,” NASA, 1964. Google Scholar

  • [110] Bahiman H., “Postlaunch Structural Analysis of ECHO II Satellite,” NASA TN-D-3170, 1966. Google Scholar

  • [111] James T. G., “Effect of Electron Irradiation on Some Properties of the Echo II Laminate,” NASA TN-D-2207, 1964. Google Scholar

  • [112] Friese G. J., Bilyeu G. D. and Thomas M., “Initial ‘80s Development of Inflated Antennas,” NASA CR-166060, 1983. Google Scholar

  • [113] Lichodziejewski D., Veal G. and Derbs B., “Spiral Wrapped Aluminum Laminate Rigidization Technology,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2002-1701, April 2002. LinkGoogle Scholar

  • [114] Greschik G. and Mikulas M., “On Imperfections and Stowage Creases in Aluminum-Rigidized Inflated Cylinders,” 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper  1996-1332, April 1996. LinkGoogle Scholar

  • [115] Peypoudat V. and Le Couls O., “Satellite Air Brake Wing Structure,” U.S. Patent Application 20,090,218,448, 2009. Google Scholar

  • [116] Depuy C. and Le Couls O., “Gossamer Technology to Deorbit LEO Non-Propulsion Fitted Satellite,” Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, FL, May 2010, pp. 301–308. Google Scholar

  • [117] Nelms F. W., “Vacuum Deployment of a Large Expandable Aerospace Shelter,” Aerospace Environmental Facility, Arnold Engineering Development Center, AEDC-TR-66-123, U.S. Air Force Systems Command, Arnold Air Force Station, TN, 1966. Google Scholar

  • [118] Rochon R., Clark R. C., Hanssen N. S. and McKillip W. J., “Aerospace Expandable Structures and Maintenance Support Devices,” Vol. 1, GCA Corp. and Archer Daniels Midland Co., AFAPL-TR-65-40, Minneapolis, MN, 1965. Google Scholar

  • [119] Hanny J. F., Lankston L. R., Jones J. W. and Scott J. C., “Chemical Rigidization of Expandable Structures,” National Cash Register Co., AFAPL-TR-66-53, Dayton, Ohio, 1966. Google Scholar

  • [120] Bernasconi M. C. and Rits W. J., “Inflatable, Space-Rigidized Support Structures for Large Spaceborne Optical Interferometer Systems,” Acta Astronautica, Vol. 22, 1990, pp. 145–153. doi:https://doi.org/10.1016/0094-5765(90)90016-E AASTCF 0094-5765 CrossrefGoogle Scholar

  • [121] Bernasconi M. C. and Kotacka K., “Inflatable Foldable Structure and Method of Manufacturing Foldable Structures,” U.S. Patent 5,044,579, 1991. Google Scholar

  • [122] Derbès B., “Case Studies in Inflatable Rigidizable Structural Concepts for Space Power,” 37th Aerospace Sciences Meeting and Exhibit, AIAA Paper  1999-1089, Jan. 1999. LinkGoogle Scholar

  • [123] Guidanean K. and Williams G. T., “An Inflatable Rigidizable Truss Structure with Complex Joints,” 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  1998-2105, April 1998. LinkGoogle Scholar

  • [124] Keller L. B., Schwartz S. S., Olevitch A. and Allinikov S. A., “Space Rigidized Resin Fiberglass Sandwich Materials,” Journal of Spacecraft, Vol. 3, No. 4, 1966, pp. 513–518. LinkGoogle Scholar

  • [125] Russell I. W. and Hanssen N. S., “Application of a Gelatin Resin System to Aerospace Expandable Sandwich Structures,” GCA Corp., AFAPL-TR-65-84, Minneapolis, MN, 1965. Google Scholar

  • [126] Grossman G. and Williams G., “Inflatable Concentrators for Solar Propulsion and Dynamic Space Power,” Journal of Solar Energy Engineering, Vol. 112, No. 4, 1990, pp. 229–236. doi:https://doi.org/10.1115/1.2929928 JSEEDO 0199-6231 CrossrefGoogle Scholar

  • [127] Griffith D. T. and Main J. A., “Structural Modeling of Inflated Foam-Rigidized Aerospace Structures,” Journal of Aerospace Engineering, Vol. 13, No. 2, 2000, pp. 37–46. doi:https://doi.org/10.1061/(ASCE)0893-1321(2000)13:2(37) CrossrefGoogle Scholar

  • [128] Tinker M. L. and Schnell A. R., “Foam Rigidized Inflatable Structural Assemblies,” U.S. Patent Application 7,735,265, 2010. Google Scholar

  • [129] Schwartz S., “Delayed Action, Foam-in-Place Polyurethane for Use in Aerospace Environment,” U.S. Air Force, ASD-TDR-62-416, 1963. Google Scholar

  • [130] Jouriles N. and Welling C. E., “Development of a Predistributed Azide Base Polyurethane Foam for Rigidization of Solar Concentrators in Space,” NASA CR-235, 1965. Google Scholar

  • [131] Schnell A. R., Leigh L. M., Tinker M. L. and McConnaughey P. R., “Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms,” 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2002-1376, April 2002. LinkGoogle Scholar

  • [132] Spacecraft—Details: OV1-8,” NASA National Space Science Data Center, 2012, http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1966-063A [retrieved 28 Jan. 2014]. Google Scholar

  • [133] Huang J., Fang H., Lopez B. and Lou M., “The Development of Inflatable Array Antennas,” AIAA Space 2003 Conference and Exposition, AIAA Paper  2003-6320, Sept. 2003. LinkGoogle Scholar

  • [134] Fang H., Quijano U., Knarr K., Huang J. and Lovick R., “Experimental and Analytical Studies of a Large In-Space Deployable Dual-Band Membrane Reflectarray Antenna,” NASA Interplanetary Network Progress Rept.  42-169, 2007. Google Scholar

  • [135] Chafer C., “Commercial Solar Sail Applications: Overview and Update on NASA’s Sunjammer Mission,” Proceedings of the 3rd International Symposium on Solar Sailing CD-ROM, University of Strathclyde, Glasgow, Scotland, June 2013. Google Scholar

  • [136] Tarazaga P. A., Inman D. J. and Keats Wilkie W., “Control of a Space Rigidizable Inflatable Boom Using Macro-Fiber Composite Actuators,” Journal of Vibration and Control, Vol. 13, No. 7, pp. 935–950, 2007. doi:https://doi.org/10.1177/1077546307078757 CrossrefGoogle Scholar