Skip to main content
Skip to article control options
No AccessFull-Length Paper

Large-Scale Multidisciplinary Optimization of a Small Satellite’s Design and Operation

Published Online:https://doi.org/10.2514/1.A32751

The design of satellites and their operation is a complex task that involves a large number of variables and multiple engineering disciplines. Thus, it could benefit from the application of multidisciplinary design optimization, but previous efforts have been hindered by the complexity of the modeling and implementation, discontinuities in the design space, and the wide range of time scales. We address these issues by applying a new mathematical framework for gradient-based multidisciplinary optimization that automatically computes the coupled derivatives of the multidisciplinary system via a generalized form of the adjoint method. The modeled disciplines are orbit dynamics, attitude dynamics, cell illumination, temperature, solar power, energy storage, and communication. Many of these disciplines include functions with discontinuities and nonsmooth regions that are addressed to enable a numerically exact computation of the derivatives for all of the modeled variables. The wide-ranging time scales in the design problem, spanning 30 s to one year, are captured through a combination of multipoint optimization and the use of a small time step in the analyses. Optimizations involving over 25,000 design variables and 2.2 million state variables require 100 h to converge three and five orders of magnitude in optimality and feasibility, respectively. The results show that the geometric design variables yield a 40% improvement in the total data downloaded, which is the objective function, and the operational design variables yield another 40% improvement. This demonstrates not only the value in this approach for the design of satellites and their operation, but also promise for its application to the design of other large-scale engineering systems.

References

  • [1] Cutler J. W., Ridley A. and Nicholas A., “Cubesat Investigating Atmospheric Density Response to Extreme Driving (CADRE),” Proceedings of the 25th Small Satellite Conference, Logan, UT, Aug. 2011. Google Scholar

  • [2] Boudjemai A., Bouanane M. H., Merad L. and Si Mohammed A. M., “Small Satellite Structural Optimisation Using Genetic Algorithm Approach,” Proceedings of the 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2007, pp. 398–406. Google Scholar

  • [3] Galski R. L., De Sousa F. L., Ramos O. M. and Muraoka I., “Spacecraft Thermal Design with the Generalized Extremal Optimization Algorithm,” Inverse Problems in Science and Engineering, Vol. 15, No. 1, 2007, pp. 61–75. doi:https://doi.org/10.1080/17415970600573924 CrossrefGoogle Scholar

  • [4] Jain S. and Simon D., “Genetic Algorithm Based Charge Optimization of Lithium-Ion Batteries in Small Satellites,” Proceedings of the 19th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 2005. Google Scholar

  • [5] Richie D. J., Lappas V. J. and Palmer P. L., “Sizing/Optimization of a Small Satellite Energy Storage and Attitude Control System,” Journal of Spacecraft and Rockets, Vol. 44, No. 4, 2007, pp. 940–952. doi:https://doi.org/10.2514/1.25134 JSCRAG 0022-4650 LinkGoogle Scholar

  • [6] Zhang B., Teng H.-F. and Shi Y.-J., “Layout Optimization of Satellite Module Using Soft Computing Techniques,” Applied Soft Computing, Vol. 8, No. 1, Jan. 2008, pp. 507–521. doi:https://doi.org/10.1016/j.asoc.2007.03.004 1568-4946 CrossrefGoogle Scholar

  • [7] Barnhart D. A., Kichkaylo T. and Hoag L., “SPIDR: Integrated Systems Engineering Design-to-Simulation Software for Satellite Build,” Proceedings of the 7th Annual Conference on Systems Engineering Research, Loughborough, England, U.K., 2009. Google Scholar

  • [8] Fukunaga A., Chien S., Mutz D., Sherwood R. and Stechert A., “Automating the Process of Optimization in Spacecraft Design,” Proceedings of the 1997 IEEE Aerospace Conference, Vol. 4, IEEE Publ., Piscataway, NJ, 1997, pp. 411–427. Google Scholar

  • [9] George J., Peterson J. and Southard S., “Multidisciplinary Integrated Design Assistant for Spacecraft (MIDAS),” Proceedings of the 36th Structures, Structural Dynamics, and Materials Conference, AIAA Paper  1995-1372, 1995. Google Scholar

  • [10] Mosher T., “Spacecraft Design Using a Genetic Algorithm Optimization Approach,” Proceedings of the 1998 IEEE Aerospace Conference, Vol. 3, IEEE Publ., Piscataway, NJ, 1998, pp. 123–134. Google Scholar

  • [11] Stump G., Yukish M., Simpson T. and O’Hara J., “Trade Space Exploration of Satellite Datasets Using a Design by Shopping Paradigm,” Proceedings of the 2004 IEEE Aerospace Conference, Vol. 6, IEEE Publ., Piscataway, NJ, 2004, pp. 3885–3895. Google Scholar

  • [12] Ebrahimi M., Farmani M. R. and Roshanian J., “Multidisciplinary Design of a Small Satellite Launch Vehicle Using Particle Swarm Optimization,” Structural and Multidisciplinary Optimization, Vol. 44, No. 6, 2011, pp. 773–784. doi:https://doi.org/10.1007/s00158-011-0662-7 1615-147X CrossrefGoogle Scholar

  • [13] Jafarsalehi A., Zadeh P. M. and Mirshams M., “Collaborative Optimization of Remote Sensing Small Satellite Mission Using Genetic Algorithms,” Iranian Journal of Science and Technology—Transactions of Mechanical Engineering, Vol. 36, No. 2, 2012, pp. 117–128. Google Scholar

  • [14] Wu W., Huang H., Chen S. and Wu B., “Satellite Multidisciplinary Design Optimization with a High-Fidelity Model,” Journal of Spacecraft and Rockets, Vol. 50, No. 2, 2013, pp. 463–466. doi:https://doi.org/10.2514/1.A32309 JSCRAG 0022-4650 LinkGoogle Scholar

  • [15] Braun R. D. and Kroo I. M., “Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment,” Multidisciplinary Design Optimization: State of the Art, edited by Alexandrov N. and Hussaini M. Y., Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 98–116. Google Scholar

  • [16] Martins J. R. R. A. and Lambe A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049–2075. doi:https://doi.org/10.2514/1.J051895 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] Lambe A. B. and Martins J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, Vol. 46, No. 2, Aug. 2012, pp. 273–284. doi:https://doi.org/10.1007/s00158-012-0763-y 1615-147X CrossrefGoogle Scholar

  • [18] Perez R. E., Jansen P. W. and Martins J. R. R. A., “pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization,” Structural and Multidisciplinary Optimization, Vol. 45, No. 1, Jan. 2012, pp. 101–118. doi:https://doi.org/10.1007/s00158-011-0666-3 1615-147X CrossrefGoogle Scholar

  • [19] Martins J. R. R. A. and Hwang J. T., “Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models,” AIAA Journal, Vol. 51, No. 11, 2013, pp. 2582–2599. doi:https://doi.org/10.2514/1.J052184 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Jameson A., “Aerodynamic Design via Control Theory,” Journal of Scientific Computing, Vol. 3, No. 3, 1988, pp. 233–260. doi:https://doi.org/10.1007/BF01061285 JSCOEB 0885-7474 CrossrefGoogle Scholar

  • [21] Reuther J. J., Jameson A., Alonso J. J., Rimlinger M. J. and Saunders D., “Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 1,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 51–60. doi:https://doi.org/10.2514/2.2413 JAIRAM 0021-8669 LinkGoogle Scholar

  • [22] Reuther J. J., Jameson A., Alonso J. J., Rimlinger M. J. and Saunders D., “Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 2,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 61–74. doi:https://doi.org/10.2514/2.2414 JAIRAM 0021-8669 LinkGoogle Scholar

  • [23] Lyu Z. and Martins J. R. R. A., “Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper  2013-0283, Jan. 2013. LinkGoogle Scholar

  • [24] Martins J. R. R. A., Alonso J. J. and Reuther J. J., “A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design,” Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 33–62. doi:https://doi.org/10.1023/B:OPTE.0000048536.47956.62 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [25] Kenway G. K. W., Kennedy G. J. and Martins J. R. R. A., “A Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Derivative Computations,” AIAA Journal (to be published). doi:https://doi.org/10.2514/1.J052255 AIAJAH 0001-1452 Google Scholar

  • [26] Gill P. E., Murray W. and Saunders M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Journal on Optimization, Vol. 12, No. 4, 2002, pp. 979–1006. doi:https://doi.org/10.1137/S1052623499350013 SJOPE8 1095-7189 CrossrefGoogle Scholar

  • [27] Hwang J. T., Lee D. Y., Cutler J.W. and Martins J. R. R. A., “Large-Scale MDO of a Small Satellite Using a Novel Framework for the Solution of Coupled Systems and their Derivatives,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2013-1599, April 2013. LinkGoogle Scholar

  • [28] Martins J. R. R. A., Sturdza P. and Alonso J. J., “The Complex-Step Derivative Approximation,” ACM Transactions on Mathematical Software, Vol. 29, No. 3, 2003, pp. 245–262. doi:https://doi.org/10.1145/838250.838251 ACMSCU 0098-3500 CrossrefGoogle Scholar

  • [29] Kreisselmeier G. and Steinhauser R., “Systematic Control Design by Optimizing a Vector Performance Index,” Proceedings of the International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems, Zurich, Switzerland, 1979, pp. 113–117. Google Scholar

  • [30] Poon N. M. K. and Martins J. R. R. A., “An Adaptive Approach to Constraint Aggregation Using Adjoint Sensitivity Analysis,” Structural and Multidisciplinary Optimization, Vol. 34, No. 1, 2007, pp. 61–73. doi:https://doi.org/10.1007/s00158-006-0061-7 1615-147X CrossrefGoogle Scholar

  • [31] Kenway G. K.W. and Martins J. R. R. A., “Multi-Point High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1, 2014, pp. 144–160. doi:https://doi.org/10.2514/1.C032150 JAIRAM 0021-8669 LinkGoogle Scholar

  • [32] Kennedy G. J. and Martins J. R. R. A., “A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization,” 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2012-5475, Sept. 2012. LinkGoogle Scholar

  • [33] Kawamura H., Naka K., Yonekura N., Yamanaka S., Kawamura H., Ohno H. and Naito K., “Simulation of I-V Characteristics of a PV Module with Shaded PV Cells,” Solar Energy Materials & Solar Cells, Vol. 75, Nos. 3–4, 2003, pp. 613–621. doi:https://doi.org/10.1016/S0927-0248(02)00134-4 0927-0248 CrossrefGoogle Scholar

  • [34] Larson W. and Wertz J., Space Mission Analysis and Design, Kluwer Academic, Norwell, MA, Jan. 1991, pp. 550–558. Google Scholar

  • [35] Haftka R. T., “Simultaneous Analysis and Design,” AIAA Journal, Vol. 23, No. 7, 1985, pp. 1099–1103. doi:https://doi.org/10.2514/3.9043 AIAJAH 0001-1452 LinkGoogle Scholar

  • [36] Gill P. E., Murray W. and Saunders M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Review, Vol. 47, No. 1, 2005, pp. 99–131. doi:https://doi.org/10.1137/S0036144504446096 SIREAD 0036-1445 CrossrefGoogle Scholar

  • [37] Gray J., Moore K. T., Hearn T. A. and Naylor B. A., “Standard Platform for Benchmarking Multidisciplinary Design Analysis and Optimization Architectures,” AIAA Journal, Vol. 51, No. 10, 2013, pp. 2380–2394. doi:https://doi.org/10.2514/1.J052160 AIAJAH 0001-1452 LinkGoogle Scholar