Skip to main content
Skip to article control options
No AccessFull-Length Paper

Long-Term Vibration Monitoring Onboard Mars Express Mission

Published Online:https://doi.org/10.2514/1.A32752

This work describes mechanical vibration monitoring onboard the ESA Mars Express orbiter, in a period of eight years since the spacecraft commissioning. The vibrations are measured using the planetary Fourier spectrometer, an infrared spectrometer based on a modified Michelson interferometer, which is part of the mission payload. The instrument is very sensitive to thermomechanical inputs, and the mechanical vibrations are a source of disturbance for its scientific measurements. However, the instrument sensitivity to mechanical disturbances and the exploitation of a diagnostic mode provide a chance to monitor the vibration environment onboard the spacecraft. It has been assessed that the main vibration contributions derive from the reaction wheels and the laser ring gyroscopes that implement harmonic dithering. Spacecraft acceleration levels at the instrument mounting interface are provided with the aim of defining reference figures for engineers and scientists who have to cope with a usually unknown in-orbit vibration environment. Moreover, the vibration levels evolution along the mission lifetime is analyzed to highlight the effect of the spacecraft aging in that respect.

References

  • [1] Dyne S., Tunbridge D. and Collins P., “The Vibration Environment on a Satellite in Orbit,” IEE Colloquium on High Accuracy Platform Control in Space, IEE, Savoy Place, London, 1993, pp. 12/1–12/6. Google Scholar

  • [2] Le Duigou J.-M., “SM98-030/431 Microvibration Measurements on Spot 4, Results of the Micromedy Experiment,” Proceedings European Conference on Spacecraft Structures, Materials and Mechanical Testing, ESA Paper  SP-428, 1999, pp. 475–483. Google Scholar

  • [3] Ooi Y., Kamiya T., Jono T., Takayama Y. and Yamawaki T., “Evaluation of Ground and Orbit Microvibration of OICETS,” 17th IFAC Symposium on Automatic Control in Aerospace, Vol. 17, IFAC Secretariat, Toulouse, France, 2007, pp. 265–270. Google Scholar

  • [4] Laurens P., Decoux E. and Janvier M., “SOHO Microvibrations: Analyses, Tests and Flight Results,” Proceedings Third International Conference Spacecraft Guidance, Navigation and Control Systems, ESA Paper  SP-381, 1997, pp. 489–495. Google Scholar

  • [5] Giuranna M., Formisano V., Biondi D., Ekonomov A., Fonti S., Grassi D., Hirsch H., Khatuntsev I., Ignatiev N., Michalska M., Mattana A., Maturilli A., Moshkin B. E., Mencarelli E., Nespoli F., Orfei R., Orleanski P., Piccioni G., Rataj M., Saggin B. and Zasova L., “Calibration of the Planetary Fourier Spectrometer Short Wavelength Channel,” Planetary and Space Science, Vol. 53, No. 10, 2005, pp. 975–991. doi:https://doi.org/10.1016/j.pss.2004.12.007 PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [6] Giuranna M., Formisano V., Biondi D., Ekonomov A., Fonti S., Grassi D., Hirsch H., Khatuntsev I., Ignatiev N., Malgoska M., Mattana A., Maturilli A., Mencarelli E., Nespoli F., Orfei R., Orleanski P., Piccioni G., Rataj M., Saggin B. and Zasova L., “Calibration of the Planetary Fourier Spectrometer Long Wavelength Channel,” Planetary and Space Science, Vol. 53, No. 10, 2005, pp. 993–1007. doi:https://doi.org/10.1016/j.pss.2005.02.007 PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [7] Davis S. P., Abrams M. C. and Brault J. W., Fourier Transform Spectrometry, Elsevier, New York, 2001, pp. 134–140. Google Scholar

  • [8] Comolli L. and Saggin B., “Mechanical Vibrations Onboard Mars Express Orbiter Detected by the Fourier Spectrometer “PFS”,” XX AIDAA Congress, Paper  SP-08, AIDAA, 2009, pp. 1–11. Google Scholar

  • [9] Comolli L. and Saggin B., “Analysis of Disturbances in the Planetary Fourier Spectrometer Through Numerical Modeling,” Planetary and Space Science, Vol. 58, No. 5, 2010, pp. 864–874. doi:https://doi.org/10.1016/j.pss.2010.01.011 PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [10] Wacker T., Weimer L. and Eckert K., “GOCE Platform Micro-Vibration Verification by Test and Analysis,” European Conference on Spacecraft Structures, Materials and Mechanical Testing, ESA, Noordwijk, The Netherlands, 2005, pp. 733–740. Google Scholar

  • [11] Drisch H. P., “Thermally Induced Vibrations of Long Thin-Walled Cylindes of Open Section,” Journal of Spacecraft and Rockets, Vol. 7, No. 8, 1970, pp. 897–905. doi:https://doi.org/10.2514/3.30068 JSCRAG 0022-4650 LinkGoogle Scholar

  • [12] Pavarin D., Francesconi A., Destefanis R., Lambert M., Bettella A., Debei S., Cecco M. D., Faraud M., Giacomuzzo C., Marucchi-Chierro P. C., Parzianello G., Saggin B. and Angrilli F., “Acceleration Fields Induced by Hypervelocity Impacts on Spacecraft Structures,” International Journal of Impact Engineering, Vol. 33, Nos. 1–12, 2006, pp. 580–591. doi:https://doi.org/10.1016/j.ijimpeng.2006.09.060 IJIED4 0734-743X CrossrefGoogle Scholar

  • [13] Lawrence A., Modern Inertial Technology: Navigation, Guidance, and Control, 2nd ed., Springer–Verlag, New York, 1998, pp. 208–224, Chap. 13. CrossrefGoogle Scholar

  • [14] Siouris G. M., “Aerospace Avionics Systems: A Modern Synthesis,” Academic Press, New York, 1993, pp. 101–118, Chap. 3.3. Google Scholar

  • [15] Liebold F., Wiegand S. and Kaso R., “Reaction Wheel Disturbance Characterization by Analysis of Micro-Vibration Measurements,” 3rd International Conference on Mechanical and Aerospace Engineering (ICMAE), Vol. 232, Trans Tech Publ., Paris, 2012, pp. 445–449. Google Scholar

  • [16] Kamesh D., Pandiyan R. and Ghosal A., “Passive Vibration Isolation of Reaction Wheel Disturbances Using a Low Frequency Flexible Space Platform,” Journal of Sound and Vibration, Vol. 331, No. 6, 2012, pp. 1310–1330. doi:https://doi.org/10.1016/j.jsv.2011.10.033 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [17] Liu K.-C., Maghami P. and Blaurock C., “Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper  2008-7232, 2008. LinkGoogle Scholar

  • [18] Bronowicki A. J., “Vibration Isolator for Large Space Telescopes,” Journal of Spacecraft and Rockets, Vol. 43, No. 1, 2006, pp. 45–53. doi:https://doi.org/10.2514/1.12036 JSCRAG 0022-4650 LinkGoogle Scholar

  • [19] Toyoshima M., Jono T., Takahashi N., Yamawaki T., Nakagawa K. and Arai K., “Transfer Functions of Microvibrational Disturbances on a Satellite,” 21st International Communications Satellite Systems Conference and Exhibit, AIAA Paper  2003-2406, 2003. LinkGoogle Scholar

  • [20] Masterson R. A., Miller D. W. and Grogan R. L., “Development and Validation of Reaction Wheel Disturbance Models: Empirical Model,” Journal of Sound and Vibration, Vol. 249, No. 3, 2002, pp. 575–598. doi:https://doi.org/10.1006/jsvi.2001.3868 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [21] De Weck O., “Reaction Wheel Disturbance Analysis,” Massachusetts Inst. of Technology, Memo. MIT-SSL-NGST-98-1, Cambridge, MA, 1998. Google Scholar

  • [22] Saggin B., Comolli L. and Formisano V., “Mechanical Disturbances in Fourier Spectrometers,” Applied Optics, Vol. 46, No. 22, 2007, pp. 5248–5256. doi:https://doi.org/10.1364/AO.46.005248 APOPAI 0003-6935 CrossrefGoogle Scholar

  • [23] Svedhem H., Titov D. V., Mc Coy D., Lebreton J. P., Barabash S., Bertaux J. L., Drossart P., Formisano V., Hausler B., Korablev O., Markiewicz W. J., Nevejans D., Patzold M., Piccioni G., Zhang T. L., Taylor F. W., Lellouch E., Koschny D., Witasse O., Eggel H., Warhaut M., Accomazzo A., Rodriguez-Canabal J., Fabrega J., Schirmann T., Clochet A. and Coradini M., “Venus Express: The First European Mission to Venus,” Planetary and Space Science, Vol. 55, No. 12, 2007, pp. 1636–1652. doi:https://doi.org/10.1016/j.pss.2007.01.013 PLSSAE 0032-0633 CrossrefGoogle Scholar