Skip to main content
Skip to article control options
No AccessFull-Length Paper

Structural Analysis of Solid Rocket Motor Grain with Aging and Damage Effects

Published Online:https://doi.org/10.2514/1.A32843

The nonlinear viscoelastic behavior of composite solid propellants is studied by using a three-dimensional thermoviscoelastic constitutive model. In this model, the effects of the time-dependent Poisson ratio, aging, damage, and thermoviscoelasticity are considered. Viscoelastic constitutive equations are numerically discretized into an incremental form by using integration algorithms. An Abaqus-based user material subroutine is presented, and a structural analysis module for solid rocket motor grain is built. Based on the analysis module, the structural responses of solid rocket motor grain are analyzed when subjected to typical loadings during its service life. Obtained results indicate that, differing from the classic linear viscoelastic model, the present model gives satisfactory numerical results closely consistent to the actual performance variation of the propellant. The designed structural analysis module could be applied to the structural analysis for practical solid rocket motors.

References

  • [1] Jana M. K., Renganathan K. and Venkateswara R. G., “Effect of Geometric and Material Nonlinearities on the Propellant Grains Stress Analysis,” Journal of Spacecraft and Rockets, Vol. 25, No. 4, 1988, pp. 317–320. doi:https://doi.org/10.2514/3.26007 LinkGoogle Scholar

  • [2] Brouwer G. R., Keizers H. and Buswell J., “Ageing in Composite Propellant Grains,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2004-4058, July 2004. LinkGoogle Scholar

  • [3] Kivity M., Hartman G. and Achlama A. M., “Ageing of HTPB Propellant,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2005-3802, July 2005. LinkGoogle Scholar

  • [4] Schapery R. A., “A Micromechanical Model for Non-Linear Viscoelastic Behavior of Particle-Reinforced Rubber with Distributed Damage,” Engineering Fracture Mechanics, Vol. 25, No. 5, 1986, pp. 845–867. doi:https://doi.org/10.1016/0013-7944(86)90046-9 CrossrefGoogle Scholar

  • [5] Zhou J. P., “A Constitutive Model of Polymer Materials Including Chemical Ageing and Mechanical Damage and Its Experimental Verification,” Polymer, Vol. 34, No. 20, 1993, pp. 4252–4256. doi:https://doi.org/10.1016/0032-3861(93)90185-D CrossrefGoogle Scholar

  • [6] Park S. W. and Schapery R. A., “A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage,” International Journal of Solids and Structures, Vol. 34, No. 8, 1997, pp. 931–947. doi:https://doi.org/10.1016/S0020-7683(96)00066-2 CrossrefGoogle Scholar

  • [7] Jung G. D. and Youn S. K., “A Nonlinear Viscoelastic Constitutive Model of Solid Propellant,” International Journal of Solids and Structures, Vol. 36, No. 25, 1999, pp. 3755–3777. doi:https://doi.org/10.1016/S0020-7683(98)00175-9 CrossrefGoogle Scholar

  • [8] Xu F., Aravas N. and Sofronis P., “Constitutive Modeling of Solid Propellant Materials with Evolving Microstructural Damage,” Journal of the Mechanics and Physics of Solids, Vol. 56, No. 5, 2008, pp. 2050–2073. doi:https://doi.org/10.1016/j.jmps.2007.10.013 CrossrefGoogle Scholar

  • [9] Yıldırım H. C. and Özüpek Ş., “Structural Assessment of a Solid Propellant Rocket Motor: Effects of Ageing and Damage,” Aerospace Science and Technology, Vol. 15, No. 8, 2011, pp. 635–641. doi:https://doi.org/10.1016/j.ast.2011.01.002 CrossrefGoogle Scholar

  • [10] Christensen R. M., Theory of Viscoelasticity, 2nd ed., Academia Press, New York, 1982, pp. 20–28. Google Scholar

  • [11] Hilton H. H., “The Elusive and Fickle Viscoelastic Poisson’s Ratio and Its Relation to the Elastic-Viscoelastic Correspondence Principle,” Journal of Mechanics of Materials and Structures, Vol. 4, No. 7, 2009, pp. 1341–1364. doi:https://doi.org/10.2140/jomms CrossrefGoogle Scholar

  • [12] Lee H. S. and Kim J., “Determination of Viscoelastic Poisson’s Ratio and Creep Compliance from the Indirect Tension Test,” Journal of Materials in Civil Engineering, Vol. 21, No. 8, 2009, pp. 416–425. doi:https://doi.org/10.1061/(ASCE)0899-1561(2009)21:8(416) CrossrefGoogle Scholar

  • [13] Zienkiewicz O. C. and Taylor R. L., The Finite Element Method for Solid and Structural Mechanics, 6th ed., Elsevier, Singapore, 2005, pp. 62–71. Google Scholar

  • [14] Du J. K., Zhu Z. N., Zhang S. Q. and Shen Y. P., “A Finite Element Analysis of Viscoelasticity for SRM Grain With Damages,” Journal of Solid Rocket Technology, Vol. 24, No. 1, 2001, pp. 1–6. Google Scholar

  • [15] Beijer J. G. J. and Spoormaker J. L., “Solution Strategies for FEM Analysis with Nonlinear Visoelastic Polymers,” Computers and Structures, Vol. 80, No. 14, 2002, pp. 1213–1299. doi:https://doi.org/S0045-7949(02)00089-5 CrossrefGoogle Scholar

  • [16] Haj-Ali R. M. and Muliana A. H., “Numerical Finite Element Formulation of the Schapery Non-Linear Viscoelastic Material Model,” International Journal for Numerical Methods in Engineering, Vol. 59, No. 1, 2004, pp. 25–45. doi:https://doi.org/10.1002/(ISSN)1097-0207 CrossrefGoogle Scholar

  • [17] Hinterhoelzl R. M. and Schapery R. A., “FEM Implementation of a Three-Dimensional Viscoelastic Constitutive Model for Particulate Composites with Damage Growth,” Mechanics of Time-Dependent Materials, Vol. 8, No. 1, 2004, pp. 65–94. doi:https://doi.org/10.1023/B:MTDM.0000027683.06097.76 CrossrefGoogle Scholar

  • [18] Kumar R. S. and Talreja R., “A Continuum Damage Model for Linear Viscoelastic Composite Materials,” Mechanics of Materials, Vol. 35, No. 3, 2003, pp. 463–480. doi:https://doi.org/10.1016/S0167-6636(02)00265-X CrossrefGoogle Scholar

  • [19] Lemaitre J., A Course on Damage Mechanics, 1st ed., Springer–Verlag, Berlin, 1992, pp. 13–20. CrossrefGoogle Scholar

  • [20] Zhou J. P., Viscoelastic Constitutive Model with Damage for Chemically Unsteady Material, National Univ. of Defense Technology, Changsa, PRC, 1989, pp. 45–57. Google Scholar

  • [21] Deng B., Shen Z. B., Duan J. B. and Tang G. J., “Finite Element Method for Viscoelastic Medium with Damage and the Application to Structural Analysis of Solid Rocket Motor Grain,” Science China Physics, Mechanics and Astronomy, Vol. 57, No. 5, 2014, pp. 908–915. doi:https://doi.org/10.1007/s11433-013-5230-2 CrossrefGoogle Scholar

  • [22] Pan B., Qian K., Xie H. and Asundi A., “Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review,” Measurement Science and Technology, Vol. 20, No. 6, 2009, Paper 062001. doi:https://doi.org/10.1088/0957-0233/20/6/062001 CrossrefGoogle Scholar

  • [23] Thangjitham S. and Heller R. A., “Stress Response of Rocker Motors to Environmental Thermal Loads,” Journal of Spacecraft and Rockets, Vol. 23, No. 5, 1986, pp. 519–526. doi:https://doi.org/10.2514/3.25839 LinkGoogle Scholar

  • [24] Chyuan W. S., “Studies of Poisson’s Ratio Variation for Solid Propellant Grains Under Ignition Pressure Loading,” International Journal of Pressure Vessels and Piping, Vol. 80, No. 12, 2003, pp. 871–877. doi:https://doi.org/10.1016/j.ijpvp.2003.08.008 CrossrefGoogle Scholar