Skip to main content
Skip to article control options
No AccessFull-Length Paper

Conceptual Design of a Small Earth Reentry Vehicle for Biological Sample Return

Published Online:

A conceptual design of an Earth return vehicle is presented with the goal of safely returning biological samples from orbit. Key entry, descent, and landing trade studies were completed at the conceptual level for two different mission scenarios: return from the International Space Station and an autonomous, free-flying vehicle returning from low Earth orbit. The analyses that follow for each key subsystem drove design decisions to create the Biopan Deployment in Orbit for Microgravity Exposure vehicle with the versatility to satisfy both of the aforementioned mission scenarios. The final design features a ballistic entry, a 45 deg sphere–cone aeroshell with a diameter of 88 cm, a phenolic impregnated carbon ablator heat shield with a thickness of 7.7 cm, and a passive landing system containing an 8-m-diam ringsail parachute combined with a 7.8-cm-thick crushable carbon foam. Analysis of the vehicle performance verified survivability of biological samples due to heat and deceleration loads from entry. Trajectory dispersion analysis yielded crossrange and downrange limited to ±1.5 and ±30  km, respectively, whereas landing velocity was confirmed to be 4.0  m/s for all cases.


  • [1] Zubair A. C., “To Boldly Go: Growing Cells in Zero Gravity to Treat Stroke,” Mayo Clinic Magazine, Vol. 29, No. 1, 2015, pp. 10–11, [retrieved Sept. 2016]. Google Scholar

  • [2] Desai P. N., Lyons D. T., Tooley J. and Kangas J., “Entry, Descent, and Landing Operations Analysis for the Stardust Entry Capsule,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, Nov.–Dec. 2008, pp. 1262–1268. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [3] TVA Selected for NASA Flight Opportunities Program,” Terminal Velocity Aerospace, LLC, [retrieved Sept. 2016]. Google Scholar

  • [4] ISS National Lab Project Pipeline: Intuitive Machines-ISS Terrestrial Return Vehicle (TRV),” ISS U.S. National Lab., [retrieved Sept. 2016]. Google Scholar

  • [5] Noetzel R. T., Sancho L. G., Pintado A., Rettberg P., Rabbow E., Panitz C., Deutschmann U., Reina M. and Horneck G., “BIOPAN Experiment LICHENS on the Foton M2 Mission Pre-Flight Verification Tests of the Rhizocarpon Geographicum-Granite Ecosystem,” Advances in Space Research, Vol. 40, No. 11, 2007, pp. 1665–1671. doi: ASRSDW 0273-1177 CrossrefGoogle Scholar

  • [6] Burger F., “Poster: Biopan—A Multi-Purpose Exposure Facility for Space Research,” Proceedings of the 6th European Space Mechanisms & Tribology Symposium, ESA SP-374, European Space Agency, Technopark, Zurich, Aug. 1995. Google Scholar

  • [7] Japanese Experiment Module (JEM)/Kibo (Hope),” Japan Aerospace Exploration Agency, National Aeronautics and Space Administration, Washington D.C., [retrieved Nov. 2014]. Google Scholar

  • [8] Chapter 6: FOTON Retrievable Capsules,” European Users Guide to Low Gravity Platforms, European Space Agency, Rept.  UIC-ESA-UM-0001, Erasmus User Centre and Communication Office, Noordwijk, The Netherlands, 2005. Google Scholar

  • [9] Demets R., Schulte W. and Baglioni P., “The Past, Present, and Future of BIOPAN,” Advances in Space Research, Vol. 36, No. 2, July 2005, pp. 311–316. doi: ASRSDW 0273-1177 CrossrefGoogle Scholar

  • [10] Pegasus User’s Guide, 7th ed., Orbital Sciences Corporation, Dulles, VA, April 2010, pp. 1–39. Google Scholar

  • [11] Lees L., “Hypersonic Flow,” Proceedings of the 5th International Aeronautical Conference, Inst. of Aeronautical Sciences, New York, 1955, pp. 241–276. Google Scholar

  • [12] Milos F. and Chen Y., “Comprehensive Model for Multicomponent Ablation Thermochemistry,” 35th AIAA Aerospace Sciences Meeting and Exhibition, AIAA Paper  1997-0141, Jan. 1997. LinkGoogle Scholar

  • [13] Kuhlman T. L., “Thermo-Chemical-Structural Analysis of Carbon-Phenolic Composites with Pore Pressure and Pyrolysis Effects,” Solid Propulsion Integrity Program, Document HI-017F/1.2.5, Costa Mesa, CA, Aug. 1992. Google Scholar

  • [14] Sepka S., Wray A., Prabhu D., Kornienko R. and Radbourne C., “Testing of SLA-561V in NASA-Ames Turbulent Flow Duct with Augmented Radiative Heating,” 42nd AIAA Thermophysics Conference, AIAA Paper  2011-3619, June 2011. LinkGoogle Scholar

  • [15] Ewing E., Bixby H. and Knacke T., “Recovery System Design Guide,” U.S. Air Force Flight Dynamics Lab., TR-78-151, Wright–Patterson Air Force Base, OH, 1978. CrossrefGoogle Scholar

  • [16] Military Specification (MIL)-C-7020H, Cloth, Parachute, Non-Rip Stop and Twill Weave, Revision H, March 1992. Google Scholar

  • [17] Witkowski A. and Bruno R., “Mars Exploration Rover Parachute Decelerator System Program Overview,” 17th AIAA Aerodynamic Decelerator Systems Technology Conference, AIAA Paper  2003-2100, May 2003. LinkGoogle Scholar

  • [18] Pleasants J. E., “Parachute Mortar Design,” Journal of Spacecraft and Rockets, Vol. 11, No. 4, 1974, pp. 246–251. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [19] Study of Pressure Packing Techniques for Parachutes,” U.S. Air Force, TR ASD-TR-61-426, Wright-Patterson AFB, OH, 1962. Google Scholar

  • [20] Braun R., “Planetary Entry, Descent and Landing Shortcourse Notes,” Georgia Inst. of Technology, Atlanta, GA, 2014. Google Scholar

  • [21] Mitcheltree R., Kellas S., Dorsey J., Desai P. and Martin C., “A Passive Earth-Entry Capsule for Mars Sample Return,” 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper  1998-2851, June 1998. LinkGoogle Scholar

  • [22] Mitcheltree R., Braun R., Hughes S. and Simonsen L., “Earth Entry Vehicle for Mars Sample Return,” International Astronautic Federation Rept.  IAF-00-Q.3.04, Rio de Janeiro, Brazil, Oct. 2000. Google Scholar

  • [23] Kellas S., “Design, Fabrication and Testing of a Crushable Energy Absorber for a Passive Earth Entry Vehicle,” NASA CR-2002-211425, April 2002. Google Scholar

  • [24] Mehta R., “Numerical Simulation of Supersonic Flow Past Reentry Capsules,” Shock Waves, Vol. 15, No. 1, March 2006, pp. 31–41. doi: SHWAEN 0938-1287 CrossrefGoogle Scholar

  • [25] Duocel Carbon Foam,”ERG Materials and Aerospace Corp., Oakland, CA, Oct. 2013, [retrieved Feb. 2015]. Google Scholar

  • [26] Orbital ATK Space Propulsion Products Catalog,” Orbital ATK Aerospace Group, Magna, UT, Aug. 2012, Paper 12-S-1902. Google Scholar

  • [27] Desai P. N., Mitcheltree R. A. and Cheatwood F. M., “Entry Dispersion Analysis for the Stardust Comet Sample Return Capsule,” Journal of Spacecraft and Rockets, Vol. 36, No. 3, May–June 1999, pp. 463–469. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [28] Justus C., Jeffries W. R., Yung S. and Johnson D., “The NASA/MSFC Global Reference Atmospheric Model—1995 Version (GRAM-95),” NASA TM-4715, Aug. 1995. Google Scholar

  • [29] Tooley J., Lyons D., Desai P. and Wawrzyniak G., “Stardust Entry: Landing and Population Hazards in Mission Planning and Operations,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper  2006-6412, Aug. 2006. LinkGoogle Scholar

  • [30] Shuttle Radar Topography Mission, 3 Arc Second Scene,” Global Land Cover Facility, Univ. of Maryland SRTM_u03_n008e004, Unfilled Unfinished 2.0, College Park, MD, Feb. 2000. Google Scholar

  • [31] 2010 TIGER/Line Shapefiles,” U.S. Census Bureau, Suitland, MD, March 2012, [retrieved Nov. 2014]. Google Scholar