Skip to main content
Skip to article control options
No AccessFull-Length Paper

Immersed Finite Element Particle-in-Cell Simulations of Plasma Charging at the Lunar Terminator

Published Online:https://doi.org/10.2514/1.A34002

A fully kinetic particle-in-cell model combined with a nonhomogeneous interface immersed finite element field solver is presented for simulations of the plasma charging at the lunar terminator. This model explicitly includes the lunar regolith layer and the bedrock in the simulation domain, taking into account of regolith layer thickness and permittivity, and is capable of resolving a nontrivial surface terrain or spacecraft configuration. Simulations are presented to study surface charging and lunar outpost charging at the lunar terminator region. The results suggest that substantial differential charging can develop, even under a very moderate plasma charging environment.

References

  • [1] Reasoner D. L. and Burke W. J., “Characteristics of the Lunar Photoelectron Layer in the Geomagnetic Tail,” Journal of Geophysical Research, Vol. 77, No. 34, 1972, pp. 6671–6687. doi:https://doi.org/10.1029/JA077i034p06671 JGREA2 0148-0227 CrossrefGoogle Scholar

  • [2] Willis R., Anderegg M., Feuerbacher B. and Fitton B., “Photoemission and Secondary Electron Emission from Lunar Surface Material,” Photon and Particle Interactions with Surfaces in Space, edited by Grard R., Vol. 37, Astrophysics and Space Science Library, Springer, Cham, The Netherlands, 1973, pp. 389–401. doi:https://doi.org/10.1007/978-94-010-2647-5_25 CrossrefGoogle Scholar

  • [3] Berg O. E., Richardson F. F. and Burton H., “Apollo 17 Preliminary Science Report,” NASA Tech. Rept.  SP-330, 1973. Google Scholar

  • [4] Freeman J. W. and Ibrahim M., “Lunar Electric Fields, Surface Potential and Associated Plasma Sheaths,” The Moon, Vol. 14, No. 1, 1975, pp. 103–114. doi:https://doi.org/10.1007/BF00562976 MOONB2 0027-0903 CrossrefGoogle Scholar

  • [5] Stubbs T. J., Halekas J. S., Farrell W. M. and Vondrak R. R., “Lunar Surface Charging: A Global Perspective Using Lunar Prospector Data,” Workshop on Dust in Planetary Systems (ESA SP-643), edited by Krueger H. and Graps A., Kauai, HI, 2005, pp. 181–184, http://adsabs.harvard.edu/abs/2007ESASP.643.181S. Google Scholar

  • [6] Halekas J. S., Delory G. T., Brain D. A., Lin R. P., Fillingim M. O., Lee C. O., Mewaldt R. A., Stubbs T. J., Farrell W. M. and Hudson M. K., “Extreme Lunar Surface Charging During Solar Energetic Particle Events,” Geophysical Research Letters, Vol. 34, No. 2, 2007, Paper L02111. doi:https://doi.org/10.1029/2006GL028517 GPRLAJ 0094-8276 CrossrefGoogle Scholar

  • [7] Halekas J. S., Delory G. T., Lin R. P., Stubbs T. J. and Farrell W. M., “Lunar Prospector Observations of the Electrostatic Potential of the Lunar Surface and Its Response to Incident Currents,” Journal of Geophysical Research, Vol. 112, No. A9, Sept. 2008, Paper A09102. doi:https://doi.org/10.1029/2008JA013194 JGREA2 0148-0227 CrossrefGoogle Scholar

  • [8] Halekas J. S., Saito Y., Delory G. T. and Farrell W. M., “New Views of the Lunar Plasma Environment,” Planetary and Space Science, Vol. 59, No. 14, 2011, pp. 1681–1694. doi:https://doi.org/10.1016/j.pss.2010.08.011 PLSSAE 0032-0633 CrossrefGoogle Scholar

  • [9] Berg O. E., “A Lunar Terminator Configuration,” Earth and Planetary Science Letters, Vol. 39, No. 3, 1978, pp. 377–381. doi:https://doi.org/10.1016/0012-821X(78)90025-0 EPSLA2 0012-821X CrossrefGoogle Scholar

  • [10] Wang J., He X. and Cao Y., “Modeling Electrostatic Levitation of Dust Particles on Lunar Surface,” IEEE Transactions on Plasma Science, Vol. 36, No. 5, 2008, pp. 2459–2466. doi:https://doi.org/10.1109/TPS.2008.2003016 ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [11] Poppe A. R., Piquette M., Likhanskii A. and Horányi M., “The Effect of Surface Topography on the Lunar Photoelectron Sheath and Electrostatic Dust Transport,” Icarus, Vol. 221, No. 1, 2012, pp. 135–146. doi:https://doi.org/10.1016/j.icarus.2012.07.018 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [12] McKay D. S., Heiken G., Basu A., Blanford G., Simon S., Reedy R., French B. M. and Papike J., “The Lunar Regolith, ”Lunar Sourcebook: A User’s Guide to the Moon, Cambridge Univ. Press, New York, 1991, pp. 285–356. Google Scholar

  • [13] Shkuratov Y. G. and Bondarenko N. V., “Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data,” Icarus, Vol. 149, No. 2, 2001, pp. 329–338. doi:https://doi.org/10.1006/icar.2000.6545 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [14] Colwell J. E., Batiste S., Horányi M., Robertson S. and Sture S., “Lunar Surface: Dust Dynamics and Regolith Mechanics,” Reviews of Geophysics, Vol. 45, No. 2, 2007, Paper RG2006. doi:https://doi.org/10.1029/2005RG000184 REGEEP 8755-1209 CrossrefGoogle Scholar

  • [15] Farrell W. M., Stubbs T. J., Halekas J. S., Delory G. T., Collier M. R., Vondrak R. R. and Lin R. P., “Loss of Solar Wind Plasma Neutrality and Affect on Surface Potentials near the Lunar Terminator and Shadowed Polar Regions,” Geophysical Research Letters, Vol. 35, No. 5, 2008, Paper L05105. doi:https://doi.org/10.1029/2007GL032653 GPRLAJ 0094-8276 CrossrefGoogle Scholar

  • [16] Farrell W. M., Stubbs T. J., Halekas J. S., Killen R. M., Delory G. T., Collier M. R. and Vondrak R. R., “Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters,” Journal of Geophysical Research, Vol. 115, No. E3, March 2010, Paper E03004. doi:https://doi.org/10.1029/2009JE003464 JGREA2 0148-0227 CrossrefGoogle Scholar

  • [17] Poppe A. and Horányi M., “Simulations of the Photoelectron Sheath and Dust Levitation on the Lunar Surface,” Journal of Geophysical Research, Vol. 115, No. A8, Aug. 2010, Paper A08106. doi:https://doi.org/10.1029/2010JA015286 JGREA2 0148-0227 CrossrefGoogle Scholar

  • [18] Zimmerman M., Farrell W., Stubbs T., Halekas J. and Jackson T., “Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion,” Geophysical Research Letters, Vol. 38, No. 19, 2011, Paper L19202. doi:https://doi.org/10.1029/2011GL048880 GPRLAJ 0094-8276 CrossrefGoogle Scholar

  • [19] Poppe A., Halekas J. S. and Horányi M., “Negative Potentials Above the Day-Side Lunar Surface in the Terrestrial Plasma Sheet: Evidence of Non-Monotonic Potentials,” Geophysical Research Letters, Vol. 38, No. 2, 2011, Paper L02103. doi:https://doi.org/10.1029/2010GL046119 GPRLAJ 0094-8276 CrossrefGoogle Scholar

  • [20] Fatemi S., Holmström M. and Futaana Y., “The Effects of Lunar Surface Plasma Absorption and Solar Wind Temperature Anisotropies on the Solar Wind Proton Velocity Space Distributions in the Low-Altitude Lunar Plasma Wake,” Journal of Geophysical Research: Space Physics, Vol. 117, No. A10, 2012, Paper A10105. doi:https://doi.org/10.1029/2011JA017353 Google Scholar

  • [21] Farrell W. M., Poppe A. R., Zimmerman M. I., Halekas J. S., Delory G. T. and Killen R. M., “The Lunar Photoelectron Sheath: A Change in Trapping Efficiency During a Solar Storm,” Journal of Geophysical Research: Planets, Vol. 118, No. 5, 2013, pp. 1114–1122. doi:https://doi.org/10.1002/jgre.20086 CrossrefGoogle Scholar

  • [22] Zimmerman M. I., Farrell W. M. and Stubbs T. J., “Recursive Plasma Wake Formation on the Moon and its Effect on Polar Volatiles,” Icarus, Vol. 226, No. 1, 2013, pp. 992–998. doi:https://doi.org/10.1016/j.icarus.2013.06.013 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [23] Mandell M. J., Cooke D. L., Davis V. A., Jongeward G. A., Gardner B. M., Hilmer R. A., Ray K. P., Lai S. T. and Krause L. H., “Modeling the Charging of Geosynchronous and Interplanetary Spacecraft Using Nascap-2k,” Advances in Space Research, Vol. 36, No. 12, 2005, pp. 2511–2515. doi:https://doi.org/10.1016/j.asr.2004.04.014 ASRSDW 0273-1177 CrossrefGoogle Scholar

  • [24] Roussel J.-F., Rogier F., Dufour G., Matéo-Vélez J.-C., Forest J., Hilgers A., Rodgers D., Girard L. and Payan D., “SPIS Open-Source Code: Methods, Capabilities, Achievements, and Prospects,” IEEE Transactions on Plasma Science, Vol. 36, No. 5, 2008, pp. 2360–2368. doi:https://doi.org/10.1109/TPS.2008.2002327 ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [25] Zimmerman M. I., Farrel W. M. and Poppe A. R., “Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids,” Icarus, Vol. 238, 2014, pp. 77–85. doi:https://doi.org/10.1016/j.icarus.2014.02.029 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [26] Christlieb A. J., Krasny R., Verboncoeur J. P., Emhoff J. W. and Boyd I. D., “Grid-Free Plasma Simulation Techniques,” IEEE Transactions on Plasma Science, Vol. 34, No. 2, 2006, pp. 149–165. doi:https://doi.org/10.1109/TPS.2006.871104 ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [27] Atkinson K. E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, Cambridge Univ. Press, New York, 1997, https://www.cambridge.org/core/books/the-numerical-solution-of-integral-equations-of-the-second-kind/91E77DDA93701D3B024830429043A037. CrossrefGoogle Scholar

  • [28] Steinbach O., Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer–Verlag, New York, 2008. doi:https://doi.org/10.1007/978-0-387-68805-3 CrossrefGoogle Scholar

  • [29] Wang J., Cao Y., Kafafy R., Pierru J. and Decyk V. K., “Simulations of Ion Thruster Plume–Spacecraft Interactions on Parallel Supercomputer,” IEEE Transactions on Plasma Science, Vol. 34, No. 5, 2006, pp. 2148–2158. doi:https://doi.org/10.1109/TPS.2006.883406 ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [30] Han D., Wang P., He X., Lin T. and Wang J., “A 3D Immersed Finite Element Method with Non-Homogeneous Interface Flux Jump for Applications in Particle-in-Cell Simulations of Plasma-Lunar Surface Interactions,” Journal of Computational Physics, Vol. 321, Sept. 2016, pp. 965–980. doi:https://doi.org/10.1016/j.jcp.2016.05.057 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [31] Han D., Wang J. and He X., “A Nonhomogeneous Immersed-Finite-Element Particle-in-Cell Method for Modeling Dielectric Surface Charging in Plasmas,” IEEE Transactions on Plasma Science, Vol. 44, No. 8, 2016, pp. 1326–1332. doi:https://doi.org/10.1109/TPS.2016.2580698 ITPSBD 0093-3813 CrossrefGoogle Scholar

  • [32] Kafafy R., Lin T., Lin Y. and Wang J., “Three-Dimensional Immersed Finite Element Methods for Electric Field Simulation in Composite Materials,” International Journal for Numerical Methods in Engineering, Vol. 64, No. 7, 2005, pp. 940–972. doi:https://doi.org/10.1002/(ISSN)1097-0207 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [33] Han D., “Particle-in-Cell Simulations of Plasma Interactions with Asteroidal and Lunar Surfaces,” Ph.D. Thesis, Univ. of Southern California, Los Angeles, Aug. 2015. Google Scholar

  • [34] He X., Lin T. and Lin Y., “Immersed Finite Element Methods for Elliptic Interface Problems with Non-Homogeneous Jump Conditions,” International Journal of Numerical Analysis and Modeling, Vol. 8, No. 2, 2011, pp. 284–301. Google Scholar

  • [35] Colwell J. E., Gulbis A. A., Horányi M. and Robertson S., “Dust Transport in Photoelectron Layers and the Formation of Dust Ponds on Eros,” Icarus, Vol. 175, No. 1, 2005, pp. 159–169. doi:https://doi.org/10.1016/j.icarus.2004.11.001 ICRSA5 0019-1035 CrossrefGoogle Scholar

  • [36] Carrier W. D., Olhoeft G. R. and Mendell W., “Physical Properties of the Lunar Surface,” Lunar Sourcebook: A User’s Guide to the Moon, Cambridge Univ. Press, New York, 1991, pp. 475–594. Google Scholar

  • [37] Wang J. and Hastings D. E., “Ionospheric Plasma Flow over Large High-Voltage Space Platforms. II: The Formation and Structure of Plasma Wake,” Physics of Fluids B, Vol. 4, No. 6, 1992, pp. 1615–1629. doi:https://doi.org/10.1063/1.860070 PFBPEI 0899-8221 CrossrefGoogle Scholar

  • [38] Zimmerman M. I., Farrell W. M., Hartzell C. M., Wang X., Horanyi M., Hurley D. M. and Hibbitts K., “Grain-Scale Supercharging and Breakdown on Airless Regoliths,” Journal of Geophysical Research: Planets, Vol. 121, No. 10, 2016, pp. 2150–2165. doi:https://doi.org/10.1002/2016JE005049 CrossrefGoogle Scholar