Dynamics of Reusable Tether System with Sliding Bead Capsule for Deorbiting Small Payloads
Abstract
This paper is devoted to the problem of a small payload delivery from an orbit to the Earth by a reusable space tether system consisting of a satellite in circular orbit, a tether, and a bottom module. The payload is placed in a dynamically symmetrical bead capsule, which can slide along the tether. Three scenarios for the payload delivery are proposed: an uncontrolled sliding of the capsule, a soft docking with the bottom module following separation, and a soft docking and the tether spin-up. The objectives of the paper are developing a mathematical model of the system, conducting a numerical analysis of its behavior, and comparison of the descent scenarios. The mathematical model that takes into account the friction between the bead capsule and the inextensible three-segment tether is developed using the Lagrange formalism. The results show that high-frequency oscillations of the bead capsule, its sharp stop, and the tether tangling can be observed. The scenario comparison allows concluding that the third scenario is more effective in terms of the capsule’s orbit perigee radius minimizing, but it requires considerable time. The first scenario, compared with the second one, yields a significant decrease in perigee altitude, but it is more dangerous.
References
[1] , “Propulsive Small Expendable Deployer System Experiment,” Journal of Spacecraft and Rockets, Vol. 37, No. 2, 2000, pp. 173–176. doi:https://doi.org/10.2514/2.3563 JSCRAG 0022-4650
[2] , “Qualification and In-Flight Demonstration of a European Tether Deployment System on YES2,” Acta Astronautica, Vol. 64, Nos. 9–10, 2009, pp. 882–905. doi:https://doi.org/10.1016/j.actaastro.2008.10.014 AASTCF 0094-5765
[3] , “Optimization of the Tether-Assisted Return Mission of a Guided Re-Entry Capsule,” Aerospace Science and Technology, Vol. 9, No. 8, 2005, pp. 713–721. doi:https://doi.org/10.1016/j.ast.2005.09.002
[4] , “Swing Principle in Tether-Assisted Return Mission from an Elliptical Orbit,” Aerospace Science and Technology, Vol. 71, Dec. 2017, pp. 156–162. doi:https://doi.org/10.1016/j.ast.2017.09.006
[5] , “Tether Capture and Momentum Exchange from Hyperbolic Orbits,” Journal of Spacecraft and Rockets, Vol. 47, No. 1, 2010, pp. 205–210. doi:https://doi.org/10.2514/1.44873 JSCRAG 0022-4650
[6] , “Analysis of Bare-Tether Systems for Deorbiting Low-Earth-Orbit Satellites,” Journal of Spacecraft and Rockets, Vol. 39, No. 2, 2002, pp. 198–205. doi:https://doi.org/10.2514/2.3820 JSCRAG 0022-4650
[7] , “Pendulum Motions of Extended Lunar Space Elevator,” Mechanics of Solids, Vol. 49, No. 5, 2014, pp. 506–517. doi:https://doi.org/10.3103/S0025654414050033 MESOBN
[8] , “Dynamics of Space Elevator After Tether Rupture,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 986–992. doi:https://doi.org/10.2514/1.59378 JGCODS 0731-5090
[9] , “Dynamic Analysis of a Tethered Satellite System with a Moving Mass,” Nonlinear Dynamics, Vol. 75, Nos. 1–2, 2014, pp. 267–281. doi:https://doi.org/10.1007/s11071-013-1064-8 NODYES 0924-090X
[10] , “Dynamics of a Flexible Space Tether Equipped with a Crawler Mass,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 2, 2008, pp. 436–440. doi:https://doi.org/10.2514/1.26240 JGCODS 0731-5090
[11] , “The Orbital Tower: A Spacecraft Launcher Using the Earth’s Rotational Energy,” Acta Astronautica, Vol. 2, Nos. 9–10, 1975, pp. 785–799. doi:https://doi.org/10.1016/0094-5765(75)90021-1 AASTCF 0094-5765
[12] , “Generalized Problems of the Space Elevator,” Mechanics of Solids, No. 6, 1972, pp. 54–59.
[13] , “Design and Deployment of a Space Elevator,” Acta Astronautica, Vol. 47, No. 10, 2000, pp. 735–744. doi:https://doi.org/10.1016/S0094-5765(00)00111-9 AASTCF 0094-5765
[14] , “Lunar Transportation Scenarios Utilising the Space Elevator,” Acta Astronautica, Vol. 57, No. 2, 2005, pp. 277–287. doi:https://doi.org/10.1016/j.actaastro.2005.03.016 AASTCF 0094-5765
[15] , Dynamic Analysis of Space Tether Missions, Vol. 126, Univelt, San Diego, CA, 2007, Chap. 7.
[16] , “The Lunar Space Elevator, a Near Term Means to Reduce Cost of Lunar Access,” AIAA SPACE and Astronautics Forum and Exposition, AIAA Paper 2017-5372, 2017. doi:https://doi.org/10.2514/6.2017-5372
[17] , “Dynamics and Control of a Space Station Based Tethered Elevator System,” Acta Astronautica, Vol. 29, No. 6, 1993, pp. 429–449. doi:https://doi.org/10.1016/0094-5765(93)90036-V AASTCF 0094-5765
[18] , “Attitude Dynamics of Three-Body Tethered Systems,” Acta Astronautica, Vol. 17, No. 10, 1988, pp. 1059–1068. doi:https://doi.org/10.1016/0094-5765(88)90189-0 AASTCF 0094-5765
[19] , “Nonlinear Control of a Double Pendulum Electrodynamic Tether System,” Journal of Spacecraft and Rockets, Vol. 44, No. 1, 2007, pp. 280–284. doi:https://doi.org/10.2514/1.24537 JSCRAG 0022-4650
[20] , “The Motion of Tethered Tug–Debris System with Fuel Residuals,” Advances in Space Research, Vol. 56, No. 7, 2015, pp. 1493–1501. doi:https://doi.org/10.1016/j.asr.2015.06.032 ASRSDW 0273-1177
[21] , “Dynamics and Control of Three-Body Tethered System in Large Elliptic Orbits,” Acta Astronautica, Vol. 144, March 2018, pp. 397–404. doi:https://doi.org/10.1016/j.actaastro.2018.01.032 AASTCF 0094-5765
[22] , “Nonlinear Control of Librational Motion of Tethered Satellites in Elliptic Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 229–239. doi:https://doi.org/10.2514/1.9166 JGCODS 0731-5090
[23] , “Three-Dimensional Dynamics and Control of Tether-Connected -Body Systems,” Acta Astronautica, Vol. 26, No. 2, 1992, pp. 77–84. doi:https://doi.org/10.1016/0094-5765(92)90048-N AASTCF 0094-5765
[24] , “Refined Dynamical Analysis of Multi-Tethered Satellite Formations,” Acta Astronautica, Vol. 84, March–April 2013, pp. 36–48. doi:https://doi.org/10.1016/j.actaastro.2012.10.031 AASTCF 0094-5765
[25] , “Dynamics of Multi-Tethered Pyramidal Satellite Formation,” Acta Astronautica, Vol. 117, Dec. 2015, pp. 222–230. doi:https://doi.org/10.1016/j.actaastro.2015.08.011 AASTCF 0094-5765
[26] , “Dynamic Multibody Modeling for Tethered Space Elevators,” Acta Astronautica, Vol. 65, No. 3, 2009, pp. 399–422. doi:https://doi.org/10.1016/j.actaastro.2008.11.016 AASTCF 0094-5765
[27] , “Elastic Oscillations of the Space Elevator Ribbon,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 6, 2007, pp. 1711–1717. doi:https://doi.org/10.2514/1.29010
[28] , “Static Deformation of Space Elevator Tether due to Climber,” Acta Astronautica, Vol. 111, June–July 2015, pp. 317–322. doi:https://doi.org/10.1016/j.actaastro.2015.02.017 AASTCF 0094-5765
[29] , “Dynamics of a Particle Moving Along an Orbital Tower,” Journal of Guidance, Control and Dynamics, Vol. 28, No. 2, 2005, pp. 380–382. doi:https://doi.org/10.2514/1.13505
[30] , “Climber Motion Optimization for the Tethered Space Elevator,” Acta Astronautica, Vol. 66, No. 9, 2010, pp. 1458–1467. doi:https://doi.org/10.1016/j.actaastro.2009.11.003 AASTCF 0094-5765
[31] , “Libration Suppression of Tethered Space System with a Moving Climber in Circular Orbit,” Nonlinear Dynamics, Vol. 91, No. 2, 2018, pp. 923–937. doi:https://doi.org/10.1007/s11071-017-3919-x NODYES 0924-090X
[32] , “Swing Principle for Deployment of a Tether-Assisted Return Mission of a Re-Entry Capsule,” Acta Astronautica, Vol. 120, March–April 2016, pp. 154–158. doi:https://doi.org/10.1016/j.actaastro.2015.12.020 AASTCF 0094-5765
[33] , “A Review of Space Tether Research,” Progress in Aerospace Sciences, Vol. 44, No. 1, 2008, pp. 1–21. doi:https://doi.org/10.1016/j.paerosci.2007.08.002 PAESD6 0376-0421
[34] , Dynamics of Tethered Space Systems, CRC Press, New York, 2010, pp. 15–18.
[35] , “Dynamics and Control of Tethered Satellite Systems,” Acta Astronautica, Vol. 63, Nos. 11–12, 2008, pp. 1169–1177. doi:https://doi.org/10.1016/j.actaastro.2008.06.020 AASTCF 0094-5765
[36] , “YES2 Optimal Trajectories in Presence of Eccentricity and Aerodynamic Drag,” Acta Astronautica, Vol. 64, No. 7, 2009, pp. 745–769. doi:https://doi.org/10.1016/j.actaastro.2008.11.007 AASTCF 0094-5765