Gravitational Trap for Space Debris in Geosynchronous Orbit
References
[1] , “Active Debris Removal: Recent Progress and Current Trends,” Acta Astronautica, Vol. 85, April–May 2013, pp. 51–60. doi:https://doi.org/10.1016/j.actaastro.2012.11.009 AASTCF 0094-5765
[2] , “Controlling the Growth of Future LEO Debris Populations with Active Debris Removal,” Acta Astronautica, Vol. 66, Nos. 5–6, 2010, pp. 648–653. doi:https://doi.org/10.1016/j.actaastro.2009.08.005 AASTCF 0094-5765
[3] , “Collision Frequency of Artificial Satellites: The Creation of a Debris Belt,” Journal of Geophysical Research: Space Physics, Vol. 83, No. A6, 1978, pp. 2637–2646. doi:https://doi.org/10.1029/JA083iA06p02637
[4] , “Active Debris Removal Using Double-Tethered Space-Tug System,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 3, 2013, pp. 722–730. doi:https://doi.org/10.2514/1.G000699 JGCODS 0731-5090
[5] , “Terminator Tether: A Spacecraft Deorbit Device,” Journal of Spacecraft and Rockets, Vol. 37, No. 2, 2000, pp. 187–196. doi:https://doi.org/10.2514/2.3565 JSCRAG 0022-4650
[6] , “Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris,” Acta Astronautica, Vol. 139, No. 7, 2017, pp. 332–343. doi:https://doi.org/10.1016/j.actaastro.2017.07.026 AASTCF 0094-5765
[7] , “A Reorbiter for Large GEO Debris Objects Using Ion Beam Irradiation,” Acta Astronautica, Vol. 94, No. 2, Feb. 2014, pp. 725–735. doi:https://doi.org/10.1016/j.actaastro.2013.07.037 AASTCF 0094-5765
[8] , “Ion Beam Shepherd for Contactless Space Debris Removal,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 916–920. doi:https://doi.org/10.2514/1.51832 JGCODS 0731-5090
[9] , “Despinning Orbital Debris Before Docking Using Laser Ablation,” Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp. 1129–1134. doi:https://doi.org/10.2514/1.A33183 JSCRAG 0022-4650
[10] , “Geosynchronous Large Debris Reorbiter: Challenges and Prospects,” Journal of the Astronautical Sciences, Vol. 59, Nos. 1–2, 2014, pp. 161–176. doi:10.1007/s40295-013-0011–8
[11] , “The Debritor: An “Off the Shelf” Based Multimission Vehicle for Large Space Debris Removal,” Proceedings of the 63rd International Astronautical Congress, Vol. 4, IAC, 2012, pp. 2894–2899.
[12] , “Input Shaped Large Thrust Maneuver with a Tethered Debris Object,” Acta Astronautica, Vol. 96, March 2014, pp. 128–137. doi:https://doi.org/10.1016/j.actaastro.2013.11.005 AASTCF 0094-5765
[13] , “Dynamics of Large Debris Connected to Space Tug by a Tether,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1654–1660. doi:https://doi.org/10.2514/1.60976 JGCODS 0731-5090
[14] , “Behaviour of Tethered Debris with Flexible Appendages,” Acta Astronautica, Vol. 104, July 2014, pp. 91–98. doi:https://doi.org/10.1016/j.actaastro.2014.07.028 AASTCF 0094-5765
[15] “ESA’s Annual Space Environment Report,” European Space Operations Centre, Darmstadt Germany, No. 2, May 2018, p. 70, https://discosweb.esoc.esa.int/web/guest/statistics [retrieved 01 March 2019].
[16] , “What a Mess! Experts Ponder Space Junk Problem,” Abc News [Online], Feb. 2009, https://abcnews.go.com/Technology/story?id=6925607&page=1 [retrieved 01 March 2019].
[17] , Dynamical Systems, the Three-Body Problem and Space Mission Design, Vol. 48, Interdisciplinary Applied Mathematics, Springer, New York, 2017, p. 400.
[18] , Analytical Mechanics of Space Systems,
AIAA Education Series , 2nd ed., AIAA, Reston, VA, 2009. doi:https://doi.org/10.2514/4.867231[19] , Theory of Orbits: The Restricted Three Body Problem, Academic Press, San Diego, CA, 1967.
[20] , Analytical Mechanics, Thomson Brooks/Cole, Belmont, CA, 2005, p. 291, http://dspace.fue.edu.eg/xmlui/bitstream/handle/123456789/2609/1713.pdf?sequence=1 [retrieved 01 March 2019].