Skip to main content
Skip to article control options
No AccessFull-Length Papers

Roughness-Induced Boundary-Layer Transition on a Hypersonic Capsule-Like Forebody Including Nonequilibrium

Published Online:https://doi.org/10.2514/1.A34488

The present work investigates the influence of high-temperature gas effects on the laminar–turbulent transition induced by a patch of distributed roughness on a hemispherical capsule-like geometry. The freestream conditions correspond to a realistic reentry scenario at Mach 20. At these conditions, chemical reactions and nonequilibrium effects are present in the high-enthalpy boundary layer of the hemisphere. Parallel Direct Numerical Simulations are undertaken to analyze the instability mechanisms in the crossflow-type vortex developing in the wake of a skewed protuberance of the roughness patch. Both linear and nonlinear growth of unsteady disturbances forced in the roughness wake, including laminar–turbulent breakdown, are considered in the analysis. The primary focus of the study is how chemical and thermal nonequilibrium affect the location of the laminar–turbulent transition as well as the level of wall heating in the transitional boundary layer for the considered capsule configuration. The results highlight the necessity to include nonequilibrium effects in this problem of roughness-induced transition at high-altitude reentry conditions because the gas modeling turns out to have a notable influence on the development of instabilities, both in the linear and in the nonlinear ranges.

References

  • [1] Schneider S. P., “Summary of Hypersonic Boundary-Layer Transition Experiments on Blunt Bodies with Roughness,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1090–1105. doi:https://doi.org/10.2514/1.37431 LinkGoogle Scholar

  • [2] Malik M. R. and Anderson E. C., “Real Gas Effects on Hypersonic Boundary Layer Stability,” Physics of Fluids, Vol. 3, No. 5, 1991, pp. 803–821. doi:https://doi.org/10.1063/1.858012 CrossrefGoogle Scholar

  • [3] Johnson H. B., Seipp T. G. and Candler G. V., “Numerical Study of Hypersonic Reacting Boundary Layer Transition on Cones,” Physics of Fluids, Vol. 10, No. 10, 1998, pp. 2676–2685. doi:https://doi.org/10.1063/1.869781 CrossrefGoogle Scholar

  • [4] Germain P. D. and Hornung H. G., “Transition on a Slender Cone in Hypervelocity Flow,” Experiments in Fluids, Vol. 22, No. 3, 1997, pp. 183–190. doi:https://doi.org/10.1007/s003480050036 CrossrefGoogle Scholar

  • [5] Stuckert G. and Reed H. L., “Linear Disturbances in Hypersonic, Chemically Reacting Shock Layers,” AIAA Journal, Vol. 32, No. 7, 1994, pp. 1384–1393. doi:https://doi.org/10.2514/3.12206 LinkGoogle Scholar

  • [6] Hudson M. L., Chokani N. and Candler G., “Linear Stability of Hypersonic Flow in Thermochemical Nonequilibrium,” AIAA Paper 1996-0671, 1996. doi:https://doi.org/10.2514/2.204 LinkGoogle Scholar

  • [7] Hudson M. L., “Linear Stability of Hypersonic Flow in Thermal and Chemical Nonequilibrium,” Ph.D. Thesis, North Carolina State Univ., Raleigh, NC, 1996. Google Scholar

  • [8] Chang C.-L., Vinh H. and Malik M., “Hypersonic Boundary-Layer Stability with Chemical Reactions Using PSE,” AIAA Paper 1997-2012, 1997. doi:https://doi.org/10.2514/6.1997-2012 LinkGoogle Scholar

  • [9] Johnson H. B. and Candler G. V., “PSE Analysis of Reacting Hypersonic Boundary Layer Transition,” AIAA Paper 1999-3793, 1999. doi:https://doi.org/10.2514/6.1999-3793 LinkGoogle Scholar

  • [10] Stemmer C., Birrer M. and Adams N. A., “Hypersonic Boundary-Layer Flow with an Obstacle in Thermochemical Equilibrium and Nonequilibrium,” Journal of Spacecraft and Rockets, Vol. 54, No. 4, 2017, pp. 899–915. doi:https://doi.org/10.2514/1.A32984 LinkGoogle Scholar

  • [11] Stemmer C., Birrer M. and Adams N. A., “Disturbance Development in an Obstacle Wake in a Reacting Hypersonic Boundary Layer,” Journal of Spacecraft and Rockets, Vol. 54, No. 4, 2017, pp. 945–960. doi:https://doi.org/10.2514/1.A33708 LinkGoogle Scholar

  • [12] De Tullio N., Paredes P., Sandham N. and Theofilis V., “Laminar Turbulent Transition Induced by a Discrete Roughness Element in a Supersonic Boundary Layer,” Journal of Fluid Mechanics, Vol. 735, Nov. 2013, pp. 613–646. doi:https://doi.org/10.1017/jfm.2013.520 CrossrefGoogle Scholar

  • [13] Marxen O., Iaccarino G. and Magin T. E., “Direct Numerical Simulations of Hypersonic Boundary-Layer Transition with Finite-Rate Chemistry,” Journal of Fluid Mechanics, Vol. 755, Sept. 2014, pp. 35–49. doi:https://doi.org/10.1017/jfm.2014.344 CrossrefGoogle Scholar

  • [14] Morkovin M., “Bypass Transition to Turbulence and Research Desiderata,” Transition in Turbines, NASA CP-2386, 1984, pp. 161–199. Google Scholar

  • [15] Theiss A., Ali S. R., Hein S., Heitmann D. and Radespiel R., “Numerical and Experimental Investigation of Laminar-Turbulent Boundary Layer Transition on a Blunt Generic Re-Entry Capsule,” AIAA Paper 2014-2353, 2014. doi:https://doi.org/10.2514/6.2014-2353 LinkGoogle Scholar

  • [16] Hein S., Theiss A., Di Giovanni A., Stemmer C., Schilden T., Schröder W., Paredes P., Choudhari M. M., Li F. and Reshotko E., “Numerical Investigation of Roughness Effects on Transition on Spherical Capsules,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, March 2019, pp. 388–404. doi:https://doi.org/10.2514/1.A34247 LinkGoogle Scholar

  • [17] Hollis B. R., “Distributed Roughness Effects on Blunt-Body Transition and Turbulent Heating,” AIAA Paper 2014-0238, 2014. doi:https://doi.org/10.2514/6.2014-0238 LinkGoogle Scholar

  • [18] Hollis B. R., “Experimental Investigation of Roughness Effects on Transition Onset and Turbulent Heating Augmentation on a Hemisphere at Mach 6 and Mach 10,” NASA TM-2017-219613, 2017. Google Scholar

  • [19] Reda D. C., “Review and Synthesis of Roughness-Dominated Transition Correlations for Reentry Applications,” Journal of Spacecraft and Rockets, Vol. 39, No. 2, 2002, pp. 161–167. doi:https://doi.org/10.2514/2.3803 LinkGoogle Scholar

  • [20] Reda D. C., Wilder M. C., Bogdanoff D. W. and Prabhu D. K., “Transition Experiments on Blunt Bodies with Distributed Roughness in Hypersonic Free Flight,” Journal of Spacecraft and Rockets, Vol. 45, No. 2, 2008, pp. 210–215. doi:https://doi.org/10.2514/1.30288 LinkGoogle Scholar

  • [21] Theiss A., Hein S., Ali S. R. C. and Radespiel R., “Wake Flow Instability Studies Behind Discrete Roughness Elements on a Generic Re-Entry Capsule,” AIAA Paper 2016-4382, 2016. doi:https://doi.org/10.2514/6.2016-4382 LinkGoogle Scholar

  • [22] Theiss A., Leyh S. and Hein S., “Pressure Gradient Effects on Wake Flow Instabilities Behind Isolated Roughness Elements on Re-Entry Capsules,” 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Paper  FP-594, 2017. doi:https://doi.org/10.13009/EUCASS2017-594 Google Scholar

  • [23] Radespiel R., Ali S. R. C., Muñoz F., Bowersox R., Leidy A., Tanno H., Kirk L. C. and Reshotko E., “Experimental Investigation of Roughness Effects on Transition on Blunt Spherical Capsule Shapes,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, March 2019, pp. 405–420. doi:https://doi.org/10.2514/1.A34295 LinkGoogle Scholar

  • [24] Di Giovanni A. and Stemmer C., “Crossflow-Type Breakdown Induced by Distributed Roughness in the Boundary Layer of a Hypersonic Capsule Configuration,” Journal of Fluid Mechanics, Vol. 856, Dec. 2018, pp. 470–503. doi:https://doi.org/10.1017/jfm.2018.706 CrossrefGoogle Scholar

  • [25] Chang C.-L., Choudhari M., Venkatachari B. S. and Li F., “Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles,” AIAA Paper 2011-3245, 2011. doi:https://doi.org/10.2514/6.2011-3245 LinkGoogle Scholar

  • [26] Marineau E. C., Laurence S. J. and Hornung H. G., “Apollo-Shaped Capsule Boundary Layer Transition at High-Enthalpy in T5,” AIAA Paper 2010-0446, 2010. doi:https://doi.org/10.2514/6.2010-446 LinkGoogle Scholar

  • [27] Tanno H., Kodera M., Komuro T., Sato K., Takahashi M. and Itoh K., “Aeroheating Measurements on a Reentry Capsule Model in Free-Piston Shock Tunnel HIEST,” AIAA Paper 2010-1181, 2010. doi:https://doi.org/10.2514/6.2010-1181 LinkGoogle Scholar

  • [28] Tanno H., Sato K., Komuro T. and Itoh K., “Free-Flight Aerodynamic Test of Reentry Vehicles in High-Temperature Real-Gas Flow,” AIAA Paper 2014-3109, 2014. doi:https://doi.org/10.2514/6.2014-3109 LinkGoogle Scholar

  • [29] Park C., “A Review of Reaction Rates in High Temperature Air,” AIAA Paper 1989-1740, 1989. doi:https://doi.org/10.2514/6.1989-1740 LinkGoogle Scholar

  • [30] Landau L. and Teller E., “On the Theory of Sound Dispersion,” Physikalische Zeitschrift der Sowjetunion, Vol. 10, 1936, Paper 34. Google Scholar

  • [31] Millikan R. and White D., “Systematics of Vibrational Relaxation,” Journal of Chemical Physics, Vol. 39, No. 12, 1963, pp. 3209–3213. doi:https://doi.org/10.1063/1.1734182 CrossrefGoogle Scholar

  • [32] Blottner F. G., Johnson M. and Ellis M., “Chemically Reacting Viscous Flow Program for Multi-Component Gas Mixtures,” Sandia National Labs. TR SC-RR-70-754, Albuquerque, NM, 1971. CrossrefGoogle Scholar

  • [33] Hirschfelder J. O., Curtiss C. F. and Bird R. A., Molecular Theory of Gases and Liquids, Wiley, New York, 1964. Google Scholar

  • [34] Wilke C., “A Viscosity Equation for Gas Mixtures,” Journal of Chemical Physics, Vol. 18, No. 4, 1950, pp. 517–519. doi:https://doi.org/10.1063/1.1747673 CrossrefGoogle Scholar

  • [35] Di Giovanni A. and Stemmer C., “Roughness-Induced Crossflow-Type Instabilities in a Hypersonic Capsule Boundary Layer Including Nonequilibrium,” Journal of Spacecraft and Rockets, March 2019. doi:https://doi.org/10.2514/1.A34404 LinkGoogle Scholar

  • [36] Park C., “Stagnation-Point Radiation for Apollo 4,” Journal of Thermophysics and Heat Transfer, Vol. 18, No. 3, 2004, pp. 349–357. doi:https://doi.org/10.2514/1.6527 LinkGoogle Scholar

  • [37] Downs R. S., White E. B. and Denissen N. A., “Transient Growth and Transition Induced by Random Distributed Roughness,” AIAA Journal, Vol. 46, No. 2, 2008, pp. 451–462. doi:https://doi.org/10.2514/1.31696 LinkGoogle Scholar

  • [38] Vos J., Duquesne N. and Lee H., “Shock Wave Boundary Layer Interaction Studies Using the NSMB Flow Solver,” Proceedings of the 3rd European Symposium on Aerothermodynamics for Space and Vehicles, edited by Harris R. A., Vol. 426, European Space Agency (ESA) Paper  ESA SP-426, Paris, 1999, pp. 229–236. Google Scholar

  • [39] Hoarau Y., Pena D., Vos J. B., Charbonier D., Gehri A., Braza M., Deloze T. and Laurendeau E., “Recent Developments of the Navier Stokes Multi Block (NSMB) CFD Solver,” AIAA Paper 2016-2056, 2016. doi:https://doi.org/10.2514/6.2016-2056 LinkGoogle Scholar

  • [40] Goebel F., Vos J. and Mundt C., “CFD Simulation of the FIRE II Flight Experiment,” AIAA Paper 2012-3350, 2012. doi:https://doi.org/10.2514/6.2012-3350 LinkGoogle Scholar

  • [41] Stemmer C. and Fehn J., “High-Temperature Gas Effects at a Capsule Under Re-Entry and Wind-Tunnel Conditions,” AIAA Paper 2014-2645, 2014. doi:https://doi.org/10.2514/6.2014-2645 LinkGoogle Scholar

  • [42] Di Giovanni A. and Stemmer C., “Numerical Simulations of the High-Enthalpy Boundary Layer on a Generic Capsule Geometry with Roughness,” New Results in Numerical and Experimental Fluid Mechanics XI, STAB/DGLR Symposium, Springer International Publishing, 2017, pp. 189–198. Google Scholar

  • [43] Malik M. R., Li F. and Chang C.-L., “Crossflow Disturbances in Three-Dimensional Boundary Layers: Nonlinear Development, Wave Interaction and Secondary Instability,” Journal of Fluid Mechanics, Vol. 268, June 1994, pp. 1–36. doi:https://doi.org/10.1017/S0022112094001242 CrossrefGoogle Scholar

  • [44] Malik M. R., Li F., Choudhari M. M. and Chang C.-L., “Secondary Instability of Crossflow Vortices and Swept-Wing Boundary-Layer Transition,” Journal of Fluid Mechanics, Vol. 399, Nov. 1999, pp. 85–115. doi:https://doi.org/10.1017/S0022112099006291 CrossrefGoogle Scholar

  • [45] Wassermann P. and Kloker M., “Transition Mechanisms Induced by Travelling Crossflow Vortices in a Three-Dimensional Boundary Layer,” Journal of Fluid Mechanics, Vol. 483, May 2003, pp. 67–89. doi:https://doi.org/10.1017/S0022112003003884 CrossrefGoogle Scholar

  • [46] White E. B. and Saric W. S., “Secondary Instability of Crossflow Vortices,” Journal of Fluid Mechanics, Vol. 525, Feb. 2005, pp. 275–308. doi:https://doi.org/10.1017/S002211200400268X CrossrefGoogle Scholar

  • [47] Chou A., King A. and Kegerise M. A., “Transition Induced by Tandem Rectangular Roughness Elements on a Supersonic Flat Plate,” AIAA Paper 2018-3531, 2018. doi:https://doi.org/10.2514/6.2018-3531 LinkGoogle Scholar