Skip to main content
Skip to article control options
No AccessFull-Length Papers

Framework for Modeling and Optimization of On-Orbit Servicing Operations Under Demand Uncertainties

Published Online:https://doi.org/10.2514/1.A34978

This paper develops a framework that models and optimizes the operations of complex on-orbit servicing infrastructures involving one or more servicers and orbital depots to provide multiple types of services to a fleet of geostationary satellites. The proposed method extends the state-of-the-art space logistics technique by addressing the unique challenges in on-orbit servicing applications and integrates it with the Rolling Horizon decision-making approach. The space logistics technique enables modeling of the on-orbit servicing logistical operations as a Mixed-Integer Linear Program whose optimal solutions can efficiently be found. The Rolling Horizon approach enables the assessment of the long-term value of an on-orbit servicing infrastructure by accounting for the uncertain service needs that arise over time among the geostationary satellites. Two case studies successfully demonstrate the effectiveness of the framework for 1) short-term operational scheduling and 2) long-term strategic decision making for on-orbit servicing architectures under diverse market conditions.

References