Skip to main content
Skip to article control options
No AccessFull-Length Papers

Space Flight Demonstration of Rotating Detonation Engine Using Sounding Rocket S-520-31

Published Online:https://doi.org/10.2514/1.A35401

To create a new flyable detonation propulsion system, a detonation engine system (DES) that can be stowed in sounding rocket S-520-31 has been developed. This paper focused on the first flight demonstration in the space environment of a DES-integrated rotating detonation engine (RDE) using S-520-31. The flight result was compared with ground-test data to validate its performance. In the flight experiment, the stable combustion of the annulus RDE with a plug-shaped inner nozzle was observed by onboard digital and analog cameras. With a time-averaged mass flow of 182±11  g/s and an equivalence ratio of 1.2±0.2, the RDE generated a time-averaged thrust of 518 N and a specific impulse of 290±18  s, which is almost identical to the ideal value of constant pressure combustion. Due to the RDE combustion, the angular velocity increased by 5.7  deg/s in total, and the time-averaged torque from the rotational component of the exhaust during 6 s of operation was 0.26  Nm. The high-frequency sampling data identified the detonation frequency during the recorded time as 20 kHz in the flight, which was confirmed by the DES ground test through high-frequency sampling data analysis and high-speed video imaging.

References

  • [1] Wolanski P., “Detonative Propulsion,” Proceedings of the Combustion Institute, Vol. 34, No. 1, 2013, pp. 125–158. https://doi.org/10.1016/j.proci.2012.10.005 CrossrefGoogle Scholar

  • [2] Endo T., Kasahara J., Matsuo A., Inaba K., Sato S. and Fujiwara T., “Pressure History at the Thrust Wall of a Simplified Pulse Detonation Engine,” AIAA Journal, Vol. 42, No. 9, 2004, pp. 1921–1930. https://doi.org/10.2514/1.976 LinkGoogle Scholar

  • [3] Zhdan S. A., Mitrofanov V. V. and Sychev A. I., “Reactive Impulse from the Explosion of a Gas Mixture in a Semiinfinite Space,” Combustion, Explosion, and Shock Waves, Vol. 30, No. 5, 1994, pp. 657–663. https://doi.org/10.1007/BF00755833 CrossrefGoogle Scholar

  • [4] Cooper M., Jackson S., Austin J., Wintenberger E. and Shepherd J. E., “Direct Experimental Impulse Measurements for Detonations and Deflagrations,” Journal of Propulsion and Power, Vol. 18, No. 5, 2002, pp. 1033–1041. https://doi.org/10.2514/2.6052 LinkGoogle Scholar

  • [5] Wintenberger E., Austin J. M., Cooper M., Jackson S. and Shepherd J. E., “Analytical Model for the Impulse of Single-Cycle Detonation Tube,” Journal of Propulsion and Power, Vol. 19, No. 1, 2003, pp. 22–38. https://doi.org/10.2514/2.6099 LinkGoogle Scholar

  • [6] Radulescu M. I. and Hanson R. K., “Effect of Heat Loss on Pulse-Detonation-Engine Flow Fields and Performance,” Journal of Propulsion and Power, Vol. 21, No. 6, 2005, pp. 274–285. https://doi.org/10.2514/1.10286 LinkGoogle Scholar

  • [7] Adamson T. C. and Olsson G. R., “Performance Analysis of a Rotating Detonation Wave Rocket Engine,” Acta Astronautica, Vol. 13, No. 4, 1967, pp. 405–415. Google Scholar

  • [8] Nicholls J. A., Cullen R. E. and Ragland K. W., “Feasibility Studies of a Rotating Detonation Wave Rocket Motor,” Journal of Spacecraft and Rockets, Vol. 3, No. 6, 1966, pp. 893–898. https://doi.org/10.2514/3.28557 LinkGoogle Scholar

  • [9] Bykovskii F. A., Zhdan S. A. and Vedemikov E. F., “Continuous Spin Detonations,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1204–1216. https://doi.org/10.1007/s10573-009-0010-z LinkGoogle Scholar

  • [10] Ishii K., Kurata W., Kawana H., Ohno K. and Ikema D., “Effects of Combustor Size on Behavior of Rotating Detonation Waves,” Proceedings of 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 2019, Paper 251. Google Scholar

  • [11] Nordeen C. A., Schwer D., Schauer F., Hoke J., Barber T. and Cetegen B., “Thermodynamic Model of a Rotating Detonation Engine,” Combustion, Explosion, and Shock Waves, Vol. 50, No. 5, 2014, pp. 568–577. https://doi.org/10.2514/1.B37196 CrossrefGoogle Scholar

  • [12] Anand V. and Gutmark E., “Rotating Detonation Combustors and Their Similarities to Rocket Instabilities,” Progress in Energy and Combustion Science, Vol. 73, July 2019, pp. 182–234. https://doi.org/10.1016/j.pecs.2019.04.001 CrossrefGoogle Scholar

  • [13] Li J. M., Teo C. J., Khoo B. C., Yao S. and Wang C. (eds.), Detonation Control for Propulsion Pulse Detonation and Rotating Detonation Engines, Springer, Cham, Switzerland, 2018, pp. 1–235. https://doi.org/10.1007/978-3-319-68906-7 Google Scholar

  • [14] Wu D., Zhou R., Liu M. and Wang J., “Numerical Investigation of the Stability of Rotating Detonation Engines,” Combustion Science and Technology, Vol. 186, Nos. 10–11, 2014, pp. 1699–1715. https://doi.org/10.1080/00102202.2014.935641 CrossrefGoogle Scholar

  • [15] Schwer D. and Kailasanath K., “Numerical Investigation of the Physics of Rotating-Detonation-Engines,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 2195–2202. https://doi.org/10.1016/j.proci.2010.07.050 CrossrefGoogle Scholar

  • [16] Rankin B. A., Kaemming T. A., Theuerkauf S. W. and Schauer F. R., “Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies,” Journal of Propulsion and Power, Vol. 33, No. 1, 2017, pp. 131–143. https://doi.org/10.2514/1.B36303 LinkGoogle Scholar

  • [17] Mizener A. R. and Lu F. K., “Low-Order Parametric Analysis of a Rotating Detonation Engine in Rocket Mode,” Journal of Propulsion and Power, Vol. 33, No. 6, 2017, pp. 1543–1554. https://doi.org/10.2514/1.B36432 LinkGoogle Scholar

  • [18] Stechmann D. P., Heister S. D. and Harroun A. J., “Rotating Detonation Engine Performance Model for Rocket Applications,” Journal of Spacecraft and Rockets, Vol. 56, No. 3, 2019, pp. 887–898. https://doi.org/10.2514/1.A34313 LinkGoogle Scholar

  • [19] Hansmetzger S., Zitoun R. and Vidal P., “A Study of Continuous Rotation Modes of Detonation in an Annular Chamber with Constant or Increasing Section,” Shock Waves, Vol. 28, No. 3, 2018, pp. 1065–1078. https://doi.org/10.1007/s00193-018-0846-9 CrossrefGoogle Scholar

  • [20] Bigler B. R., Bennewitz J. W., Danczyk S. A. and Hargus W. A., “Rotating Detonation Rocket Engine Operability Under Varied Pressure Drop Injection,” Journal of Spacecraft and Rockets, Vol. 58, No. 2, 2021, pp. 316–325. https://doi.org/10.2514/1.A34763 LinkGoogle Scholar

  • [21] Frolov S. M., Aksenov V. S., Ivanov V. S., Medvedev S. N., Shamshin I. O., Yakovlev N. N. and Kostenko I. I., “Rocket Engine with Continuous Detonation Combustion of the Natural Gas–Oxygen Propellant System,” Doklady Physical Chemistry, Vol. 478, No. 2, 2018, pp. 31–34. https://doi.org/10.1134/S001250161802001X CrossrefGoogle Scholar

  • [22] Goto K., Kato Y., Ishihara K., Matsuoka K., Kasahara J., Matsuo A., Funaki I., Nakata D., Higashino K. and Tanatsugu N., “Thrust Validation of Rotating Detonation Engine System by Moving Rocket Sled Test,” Journal of Propulsion and Power, Vol. 37, No. 3, May–June 2021, pp. 419–425 https://doi.org/10.2514/1.B38037 LinkGoogle Scholar

  • [23] Goto K., Yokoo R., Kawasaki A., Matsuoka K., Kasahara J., Matsuo A., Funaki I. and Kawashima H., “Investigation into the Effective Injector Area of a Rotating Detonation Engine with Impact of Backflow,” Shock Waves, Vol. 31, No. 7, 2021, pp. 753–762. https://doi.org/10.1007/s00193-021-00998-9 CrossrefGoogle Scholar

  • [24] Matsuoka K., Tanaka M., Noda T., Kawasaki A. and Kasahara J., “Experimental Investigation on a Rotating Detonation Cycle with Burned Gas Backflow,” Combustion and Flame, Vol. 225, March 2021, pp. 13–19. https://doi.org/10.1016/j.combustflame.2020.10.048 CrossrefGoogle Scholar

  • [25] Sawada S., Goto K., Ishihara K., Kawasaki A., Matsuoka K., Kasahara J., Matsuo A. and Funaki I., “Experimental Study of Torque Around the Axial Direction on Rotating Detonation Engines,” Journal of Propulsion and Power, Vol. 38, No. 1, 2021, pp. 59–70. https://doi.org/10.2514/1.B38374 LinkGoogle Scholar

  • [26] Matsuoka K., Morozumi T., Takagi S., Kasahara J., Matsuo A. and Funaki I., “Flight Validation of a Rotary-Valved Four-Cylinder Pulse Detonation Rocket,” Journal of Propulsion and Power, Vol. 32, No. 2, 2016, pp. 383–391. https://doi.org/10.2514/1.B35739 LinkGoogle Scholar

  • [27] Norris G., “Pulse Power: Pulse Detonation Engine-Powered Flight Demonstration Marks Milestone in Mojave,” Aviation Week and Space Technology, Vol. 168, No. 7, 2008, Paper 60. Google Scholar

  • [28] Yoshida H., Micci M. M., Nakane M., Yamaguchi K. and Ishikawa Y., “Integrated Optimization for Single-Stage-to-Orbit Using a Pulse Detonation Engine,” Journal of Spacecraft and Rockets, Vol. 56, No. 4, 2019, pp. 983–989. https://doi.org/10.2514/1.A34341 LinkGoogle Scholar

  • [29] Burke R. F., Rezzag T., Rodriguez A., Garcia K., Ahmed K. A. and Kotler A., “Development of an Automatic-Calibrating Small-Scale Thrust Stand for Rotating Detonation Rocket Engines,” AIAA SciTech 2022 Forum, AIAA Paper 2022-0233, Jan. 2022. https://doi.org/10.2514/6.2022-2370 Google Scholar

  • [30] Okninski A., Kindracki F. and Wolanski P., “Rocket Rotating Detonation Engine Flight Demonstrator,” Aircraft Engineering and Aerospace Technology: An International Journal, Vol. 88, No. 4, 2016, pp. 480–491. https://doi.org/10.1108/AEAT-07-2014-0106 CrossrefGoogle Scholar

  • [31] Kawalec M., Perkowski W., Lukasik B., Bilar A. and Wolanski P., “Applications of the Continuously Rotating Detonation to Combustion Engines at the łukasiewicz–Institute of Aviation,” Combustion Engines, advance online publication, 2 Jan. 2022. https://doi.org/10.19206/CE-145409 Google Scholar

  • [32] Itouyama N., Matsuyama K., Matsuoka K., Kawasaki A., Watanabe H., Goto K., Ishihara K., Buyakofu V., Noda T., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M., Habu H., Takeuchi S., Arakawa S., Masuda J., Maehara K., Nakao T. and Yamada K., “Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: History from Development to Flight,” AIAA SciTech 2022 Forum, AIAA Paper 2022-0230, Jan. 2022. https://doi.org/10.2514/6.2022-0230 Google Scholar

  • [33] Kawasaki A., Matsuyama K., Matsuoka K., Watanabe H., Itouyama N., Goto K., Ishihara K., Buyakofu V., Noda T., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M., Habu H., Takeuchi S., Arakawa S., Masuda J., Maehara K., Nakao T. and Yamada K., “Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: System Design,” AIAA SciTech 2022 Forum, AIAA Paper 2022-0229, Jan. 2022. https://doi.org/10.2514/6.2022-0229 Google Scholar

  • [34] Watanabe H., Matsuyama K., Matsuoka K., Kawasaki A., Itouyama N., Goto K., Ishihara K., Buyakofu V., Noda T., Ito S., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M., Habu H., Takeuchi S., Arakawa S., Masuda J., Maehara K., Nakao T. and Yamada K., “Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Flight Path and Attitude,” AIAA SciTech 2022 Forum, AIAA Paper 2022-0231, Jan. 2022. https://doi.org/10.2514/6.2022-0231 Google Scholar

  • [35] Buyakofu V., Matsuoka K., Matsuyama K., Kawasaki A., Watanabe H., Itouyama N., Goto K., Ishihara K., Noda T., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M., Habu H., Takeuchi S., Arakawa S., Masuda J. and Maehara K., “Development of an S-Shaped Pulse Detonation Engine for a Sounding Rocket,” Journal of Spacecraft and Rockets, Vol. 59, No. 3, May 2022, pp. 850–860. https://doi.org/10.2514/1.A35200 LinkGoogle Scholar

  • [36] Buyakofu V., Matsuoka K., Matsuyama K., Kawasaki A., Watanabe H., Itouyama N., Goto K., Ishihara K., Noda T., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M., Habu H., Takeuchi S., Arakawa S., Masuda J., Maehara K., Nakao T. and Yamada K., “Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Pulse Detonation Engine,” AIAA SciTech 2022 Forum, AIAA-Paper 2022-0233, Jan. 2022. https://doi.org/10.2514/6.2022-0233 Google Scholar

  • [37] Yamada K., Nakao T., Hamori H., Nagata Y., Ishimaru T., Imai S., Maeda K., Maehara K., Moriyoshi T., Takayasu H., Kawano T., Akimoto Y., Takasawa H., Mori M., Mitsuno M., Hirata K., Kawakubo T., Yage Y., Ono R., Habu H. and Suzuki K., “Development and Flight Demonstration of Reentry and Recovery Module with Deployable Aeroshell Technology for Sounding Rocket Experiment,” 33rd International Symposium on Space Technology and Science, Paper 2022-m-14, Feb. 2022. Google Scholar

  • [38] Nakao T., Yamada K., Hamori H., Ishimaru T., Imai S., Nagata Y., Maehara K., Habu H., Maeda K., Akimoto Y., Mori M., Mitsuno M., Hirata K., Takasawa H. and Suzuki K., “Overview of Reentry and Recovery Module with Deployable Aeroshell Technology for Sounding Rocket Experiment,” 26th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2022-2710, May 2022. https://doi.org/10.2514/6.2022-271 Google Scholar

  • [39] Nagata Y., Yamada K. and Nakao T., “Landing Point Analysis and Forecast Wind Data Validation for Low-Ballistic-Coefficient Flight Vehicle with Deployable Aeroshell,” Transactions of JSASS (accepted for publication). Google Scholar

  • [40] Lemmon E. W., Bell I. H., Huber M. L. and McLinden M. O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, online database, National Inst. of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD, 2018. Google Scholar

  • [41] Mohri M., “Vacuum in Space,” Vacuum Science and Technology (Japanese), Vol. 30, No. 12, 1987, pp. 93–98. Google Scholar

  • [42] Stechmann D. P., “Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments,” Ph.D. Thesis, Purdue Univ., West Lafayette, IN, 2017. Google Scholar

  • [43] Hill P. and Peterson C., Mechanics and Thermodynamics of Propulsion, 2nd ed., Pearson, Upper Saddle River, NJ, 1991, p. 540. Google Scholar

  • [44] Hagemann G., Immich H., Nguyen V. T. and Dumnov E. G., “Advanced Rocket Nozzles,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 620–634. https://doi.org/10.2514/2.5354 LinkGoogle Scholar

  • [45] Goto K., Nishimura J., Kawasaki A., Matsuoka K., Kasahara J., Matsuo A., Funaki I., Nakata D., Uchiumi M. and Higashino K., “Propulsive Performance and Heating Environment of Rotating Detonation with Various Nozzles,” Journal of Propulsion and Power, Vol. 35, No. 1, 2019, pp. 213–223. https://doi.org/10.2514/1.B37196 LinkGoogle Scholar

  • [46] Gordon S. and McBride B. J., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” NASA Rept. RP-1311, 1996. Google Scholar