Skip to main content
Skip to article control options
No AccessFull-Length Paper

Full Particle-In-Cell Simulation Methodology for Axisymmetric Hall Effect Thrusters

Published Online:https://doi.org/10.2514/1.B34774

A fully kinetic plasma simulation based upon the particle-in-cell and Monte Carlo collision methodologies was developed to model axisymmetric closed-drift Hall effect thruster discharges. The simulation captures two dimensions in space and three in velocity. All species are modeled as particles. The electric field is solved by Gauss’s law. Electron transport mechanisms include anomalous diffusion, classical diffusion, and wall effects including secondary electron emission. To accelerate the simulation, an artificial ion to electron mass ratio is assumed. An artificial vacuum permittivity is also assumed. The simulation captures many physical features of the discharge, including wall effects and breathing mode oscillations. Thrust is predicted to within 5% and current is predicted to within 16%. A two-temperature electron energy distribution with non-Maxwellian features is also predicted. Axial profiles of plasma density, potential, and temperature compare well with measurements taken with probes embedded in the discharge channel wall.

References

  • [1] Janes G., Dotson J. and Wilson T., “Momentum Transfer Through Magnetic Fields,” Proceedings of Third Symposium on Advanced Propulsion Concepts, Vol. 1, Gordon and Breach Science Publishers, New York, 1963, pp. 153–175. Google Scholar

  • [2] Meyerand R. G., “Momentum Transfer Through the Electric Fields,” Proceedings of Third Symposium on Advanced Propulsion Concepts, Vol. 1, Gordon and Breach Science Publishers, New York, 1963, pp. 177–190. Google Scholar

  • [3] Seikel G. R., “Generation of Thrust—Electromagnetic Thrusters,” Proceedings of the NASA-University Conference on the Science and Technology of Space Exploration, Vol. 2, Nov. 1962, pp. 171–176. Google Scholar

  • [4] Zharinov A. V. and Popov Yu. S., “Acceleration of Plasma by a Closed Hall Current,” Soviet Physics—Technical Physics, Vol. 12, No. 2, 1967, pp. 208–211. Google Scholar

  • [5] Morozov A. I., Kislov A. Ya. and Zubkov I. P., Strong-current Plasma Accelerator with Closed Electron Drift, Journal of Experimental and Theoretical Physics Letters, Vol. 7, 1968, pp. 172–174. JTPLA2 0021-3640 Google Scholar

  • [6] Morozov A. I., Esipchuk Yu. V., Tilinin G. N., Trofimov A. V., Sharov Yu. A. and Shchepkin G. Ya., “Plasma Accelerator with Closed Electron Drift and Extended Acceleration Zone,” Soviet Physics—Technical Physics, Vol. 17, No. 1, July 1972, pp. 38–45. Google Scholar

  • [7] Morozov A. I., Esipchuk Yu. V., Kapulkin A. M., Nevrovskii V. A. and Smirnov V. A., “Effect of the Magnetic Field on a Closed-Electron-Drift Accelerator,” Soviet Physics—Technical Physics, Vol. 17, No. 3, Sept. 1972, pp. 482–487. Google Scholar

  • [8] Morozov A. I., “Conceptual Development of Stationary Plasma Thrusters,” Plasma Physics Reports, Vol. 29, No. 3, 2003, pp. 235–250. doi:https://doi.org/10.1134/1.1561119 PPHREM 1063-780X CrossrefGoogle Scholar

  • [9] Pote B. and Tedrake R., “Performance of a High Specific Impulse Hall Thruster,” Electric Rocket Propulsion Society Paper  01-35, 2001. Google Scholar

  • [10] Fife J., Martinez-Sanchez M. and Szabo J., “Numerical Study of Low-Frequency Discharge Oscillations in Hall Thrusters,” 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  1997-3052, 1997. LinkGoogle Scholar

  • [11] Janes G. and Lowder R., “Anomalous Electron Diffusion and Ion Acceleration in a Low-Density Plasma,” Physics of Fluids, Vol. 9, No. 6, June 1966, pp. 1115–1123. doi:https://doi.org/10.1063/1.1761810 0031-9171 CrossrefGoogle Scholar

  • [12] Morozov A. I., Esipchuk Yu V., Kapulkin A. M., Nevrovskii V. A. and Smirnov V. A., “Azimuthally Asymmetric Modes and Anomalous Conductivity in Closed Electron Drift Accelerators,” Soviet Physics—Technical Physics, Vol. 18, No. 5, Nov. 1973, pp. 615–620. Google Scholar

  • [13] Bishaev A. and Kim V., “Local Plasma Properties in a Hall-Current Accelerator with an Extended Acceleration Zone,” Soviet Physics—Technical Physics, Vol. 23, Sept. 1978, pp. 1055–1057. Google Scholar

  • [14] Baranov V. I., Nazarenko Yu. S., Petrosov V. A., Vasin A. I. and Yashnov Yu. M., “New Conceptions of Oscillation Mechanisms in the Accelerator with Closed Drift of Electrons,” Electric Rocket Propulsion Society Paper  95-44, 1995. Google Scholar

  • [15] Meezan N. and Cappelli M., “Electron Density Measurements for Determining the Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma,” 36th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, AIAA Paper  2000-3420, 2000. LinkGoogle Scholar

  • [16] Hirakawa M., “Electron Transport Mechanism in a Hall Thruster,” Electric Rocket Propulsion Society Paper  97-021, 1997. Google Scholar

  • [17] Meezan N., Hargus W. and Cappelli M., “Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma,” Physical Review E, Vol. 63, No. 2, 2001, Paper 026410. doi:https://doi.org/10.1103/PhysRevE.63.026410 PLEEE8 1063-651X CrossrefGoogle Scholar

  • [18] Batishchev O. and Martinez-Sanchez M., “Study of Electron and Ion Transport in a Hall Effect Thruster,” Bulletin of the American Physical Society, Vol. 47, No. 9, 2002, p. 105. Google Scholar

  • [19] Batishchev O. and Martinez-Sanchez M., “Charged Particles Transport in the Hall Effect Thruster,” Electric Rocket Propulsion Society Paper  2003-188, 2003. Google Scholar

  • [20] Azziz Y., “Experimental and Theoretical Characterization of a Hall Thruster Plume,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2007. Google Scholar

  • [21] Birdsall C. and Langdon A., Plasma Physics via Computer Simulation, Inst. of Physics Publishing, London, 1991. CrossrefGoogle Scholar

  • [22] Hockney R. and Eastwood J., Computer Simulation Using Particles, Inst. of Physics Publishing, London, 1988. CrossrefGoogle Scholar

  • [23] Fife J., “Two-Dimensional Hybrid Particle-In-Cell Modeling of Hall Thrusters,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 1995. Google Scholar

  • [24] Fife J., “Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 1998. Google Scholar

  • [25] Parra F., Ahedo E., Fife J. and Martinez-Sanchez M., “A Two-Dimensional Hybrid Model of the Hall Thruster Discharge,” Journal of Applied Physics, Vol. 100, No. 2, 2006, Paper 023304. doi:https://doi.org/10.1063/1.2219165 JAPIAU 0021-8979 CrossrefGoogle Scholar

  • [26] Szabo J., Martinez-Sanchez M. and Batishchev O., “Numerical Modeling of the Near-Anode Region in a TAL Thruster,” 36th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, AIAA Paper  2000-3653, 2000. LinkGoogle Scholar

  • [27] Szabo J., “Full PIC/Monte-Carlo Simulation of a TAL Thruster: Thesis Summary,” Bulletin of the American Physical Society, Vol. 45, No. 7, 2000, p. 166. BAPSA6 0003-0503 Google Scholar

  • [28] Szabo J., “Fully Kinetic Numerical Modeling of a Plasma Thruster,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2001. Google Scholar

  • [29] Szabo J., Martinez-Sanchez M. and Batishchev O., “Fully Kinetic Hall Thruster Modeling,” Electric Rocket Propulsion Society Paper  01-341, 2001. Google Scholar

  • [30] Khayms V. and Martinez-Sanchez M., “Fifty-Watt Hall Thruster for Microsatellites,” Micropropulsion for Small Spacecraft, edited by Micci M. and Ketsdever A., Vol. 187, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, pp. 233–254. Google Scholar

  • [31] Blateau V., Martinez-Sanchez M., Batishchev O. and Szabo J., “PIC Simulation of High Specific Impulse Hall Effect Thruster,” Proceedings of the 27th International Electric Propulsion Conference, Paper  01-037, 2001. Google Scholar

  • [32] Szabo J., Warner N. and Martinez-Sanchez M., “Instrumentation and Modeling of a High Isp Hall Thruster,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2002-4248, 2002. LinkGoogle Scholar

  • [33] Blateau V., “PIC Simulation of a Ceramic-Lined Hall-Effect Thruster,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2002. Google Scholar

  • [34] Szabo J., Rostler P., McElhinney S. and Warner N., “One and Two Dimensional Modeling of the BHT-1000,” Electric Rocket Propulsion Society Paper  03-231, 2003. Google Scholar

  • [35] Warner N., Szabo J. and Martinez-Sanchez M., “Characterization of a High Specific Impulse Hall Thruster Using Electrostatic Probes,” Electric Rocket Propulsion Society Paper  03-082, 2003. Google Scholar

  • [36] Szabo J., “High Isp Hall Thruster Simulations and Experiments,” Bulletin of the American Physical Society, Vol. 49, No. 8, Nov. 2004, pp. 299–300. BAPSA6 0003-0503 Google Scholar

  • [37] Sullivan K., “PIC Simulation of SPT Hall Thrusters: High Power Operation and Wall Effects,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2004. Google Scholar

  • [38] Fox J., “Parallelization of a Particle-in-Cell Simulation Modeling Hall-Effect Thrusters,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2005. Google Scholar

  • [39] Szabo J., Gasdaska C., Hruby V. and Robin M., “Bismuth Hall Effect Thruster Development,” Proceedings of the 2nd Liquid Propulsion Subcommittee and 1st Spacecraft Propulsion Subcommittee Joint Meeting, Chemical Propulsion Information Analysis Center Paper  2005-0356DG, 2005. Google Scholar

  • [40] Szabo J. and Azziz Y., “Characterization of a High Specific Impulse Xenon Hall Effect Thruster,” Electric Rocket Propulsion Society Paper  05-324, 2005. Google Scholar

  • [41] Warner N., “Theoretical and Experimental Investigation of Hall Thruster Miniaturization,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2007. Google Scholar

  • [42] Fox J., Batishcheva A., Batishchev O. and Martinez-Sanchez M., “Adaptively Meshed Fully-Kinetic PIC-Vlasov Model For Near Vacuum Hall Thrusters,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2006-4324, 2006. LinkGoogle Scholar

  • [43] Gildea S., “Fully Kinetic Modeling of a Divergent Cusped-Field Thruster,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2009. LinkGoogle Scholar

  • [44] Gildea S. and Martinez-Sanchez M., “Improvements in Divergent Cusped-Field Thruster Modeling,” Proceedings of the ESA/A3F Space Propulsion Conference, San Sebastian, Spain, May 2010. Google Scholar

  • [45] Gildea S., “Development of the Plasma Thruster Particle-In-Cell Simulator to Complement Empirical Studies of a Low-Power Cusped-Field Thruster,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2012. Google Scholar

  • [46] Warner W., “Performance Testing and Internal Probe Measurements of a High Specific Impulse Hall Thruster,” M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, 2003. Google Scholar

  • [47] Azziz Y., Warner N., Martinez-Sanchez M. and Szabo J., “High Voltage Plume Measurements and Internal Probing of the BHT-1000 Hall Thruster,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2004-4097, 2004. LinkGoogle Scholar

  • [48] Kim V., Semenov A. and Shkarban I., “Investigation of the Accelerated Ions Energy Accommodation Under Their Impingement with Solid Surfaces,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2002-4110, July 2002. LinkGoogle Scholar

  • [49] Bugeat J. P. and Koppel C., “Development of a Secondary Generation of SPT,” Electric Rocket Propulsion Society Paper  95-240, 1995. Google Scholar

  • [50] Hobbs G. and Wesson J., “Heat Flow Through a Langmuir Sheath in the Presence of Electron Emission,” Plasma Physics, Vol. 9, No. 1, 1967, pp. 85–87. doi:https://doi.org/10.1088/0032-1028/9/1/410 PLPHBZ 0032-1028 CrossrefGoogle Scholar

  • [51] Batishchev O. V., Xu X. Q., Byers J. A., Cohen R. H., Krasheninnikov S. I., Rognlien T. D. and Sigmar D. J., “Kinetic Effects on Particle and Heat Fluxes in Detached Plasmas,” Physics of Plasmas, Vol. 3, No. 9, 1996, p. 3386. doi:https://doi.org/10.1063/1.871615 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [52] Watson V., “Computer Simulation of a Plasma Accelerator,” Ph.D. Dissertation, Stanford Univ., Stanford, CA, 1969. Google Scholar

  • [53] Taccogna F., Longo S., Capitelli M. and Schneider R., “Plasma Flow in a Hall Thruster,” Physics of Plasmas, Vol. 12, No. 4, 2005, p. 043502. doi:https://doi.org/10.1063/1.1862630 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [54] Taccogna F., Longo S., Capitelli M. and Schneider R., “Self-Similarity in Hall Plasma Discharges: Applications to Particle Models,” Physics of Plasmas, Vol. 12, No. 5, 2005, Paper 053502. doi:https://doi.org/10.1063/1.1877517 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [55] Irishkov S., Gorshkov O. and Shagayda A., “Fully Kinetic Modeling of Low-Power Hall Thrusters,” Electric Rocket Propulsion Society Paper  2004-035, 2005. Google Scholar

  • [56] Liu H., Wi B., Yu D., Cao Y. and Duan P., “Particle-in-Cell Simulation of a Hall Thruster,” Journal of Physics D: Applied Physics, Vol. 43, No. 16, 2010, Paper 165202. doi:https://doi.org/10.1088/0022-3727/43/16/165202 JPAPBE 0022-3727 Google Scholar

  • [57] Cho S., Komurasaki K. and Arakawa Y., “Lifetime Simulation of a SPT-Type Hall Thruster by Using a 2D Fully Kinetic PIC Model,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2012-4016, 2012. LinkGoogle Scholar

  • [58] Haag T., “Thrust Stand for High-Power Electric Propulsion Devices,” Review of Scientific Instruments, Vol. 62, No. 5, 1991, pp. 1186–1191. doi:https://doi.org/10.1063/1.1141998 RSINAK 0034-6748 CrossrefGoogle Scholar

  • [59] Kim V., Grdlichko D., Kozlov V., Lazourenko A., Popov G. and Skrylnikov A., “Local Plasma Parameter Measurements by Nearwall Probes Inside the SPT Accelerating Channel Under Thruster Operation with Kr,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2002-4108, 2002. LinkGoogle Scholar

  • [60] Sydorenko D., Smolyakov A., Kaganovich I. and Raitses Y., “Kinetic Simulation of Secondary Electron Emission Effects in Hall Thrusters,” Physics of Plasmas, Vol. 13, No. 1, 2006, Paper 014501. doi:https://doi.org/10.1063/1.2158698 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [61] Mitchner M. and Kruger C., Partially Ionized Gases, John Wiley & Sons, New York, 1973, p. 58. Google Scholar

  • [62] Mikellides I., Katz I. and Hofer R., “Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper  2011-5809, 2011. LinkGoogle Scholar

  • [63] Chen F., Introduction to Plasma Physics and Controlled Fusion, Vol. 1: Plasma Physics, Plenum, New York, 1984. CrossrefGoogle Scholar

  • [64] Szabo J. and Martinez-Sanchez M., “Application of 2-D Hybrid PIC Code to Alternative Hall Thruster Geometries,” 34th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, AIAA Paper  1998-3795, 1998. LinkGoogle Scholar

  • [65] Koo J. and Boyd I., “Modeling of Anomalous Electron Mobility in Hall Thrusters,” Physics of Plasmas, Vol. 13, No. 3, 2006, p. 033501. doi:https://doi.org/10.1063/1.2172191 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [66] Cheng S. and Martinez-Sanchez M., “Hybrid Particle-in-Cell Erosion Modeling of Two Hall Thrusters,” Journal of Propulsion and Power, Vol. 24, No. 5, 2008, pp. 987–998. doi:https://doi.org/10.2514/1.36179 JPPOEL 0748-4658 LinkGoogle Scholar

  • [67] Fox J., Batishchev O. and Martinez-Sanchez M., “Kinetic Model of Anomalous Transport for Hall Effect Thrusters,” Bulletin of the American Physical Society, Vol. 51, No. 7, 2006, p. 328. Google Scholar

  • [68] Batishcheva A., Batishchev O. and Fox J., “Hybrid Kinetic Method for Mixed-Collisional Plasma Flows with Sharp Gradients,” U.S. Air Force, Rept.  AFRL-PR-ED-TR-2007-0042, July 2007. Google Scholar

  • [69] Batishchev O., “Semi-Analytical Adaptive Vlasov–Fokker-Planck–Boltzmann Methods,” Eulerian Codes for the Numerical Solution of the Kinetic Equations of Plasmas, edited by Shoucri M., Nova Science, Hauppauge, NY, 2010, pp. 237–315. Google Scholar