Skip to main content
Skip to article control options
No AccessFull-Length Paper

Analysis of Acoustics and Vortex Shedding Interactions in Hybrid Rocket Motors

Published Online:https://doi.org/10.2514/1.B35188

Hybrid rocket engines usually have an aft-mixing chamber to improve combustion efficiency. The presence of a sudden expansion at the exit of the fuel port determines the formation of vortices, whose vigorous burning may drive acoustic waves in the chamber. The shedding of vortices itself is then affected by the flow fluctuations, producing a well-known feedback loop. A reduced-order model is used here to analyze this phenomenon. It is assumed that vortex burning is localized in space and time, and a kicked oscillator model is used. A one-dimensional model proposed by the authors is used to determine the values of the eigenacoustic modes and corresponding damping coefficients. Numerical results are compared with experimental data.

References

  • [1] Karabeyouglu A., De Zilwa S., Cantwell B. and Zilliac G., “Modeling of Hybrid Rocket Low Frequency Instabilities,” Journal of Propulsion and Power, Vol. 21, No. 6, 2005, pp. 1107–1116. doi:https://doi.org/10.2514/1.7792 JPPOEL 0748-4658 LinkGoogle Scholar

  • [2] Carmicino C., “Acoustics, Vortex Shedding and Low-Frequency Dynamics Interaction in an Unstable Hybrid Rocket,” Journal of Propulsion and Power, Vol. 25, No. 6, 2009, pp. 1322–1335. doi:https://doi.org/10.2514/1.42869 JPPOEL 0748-4658 LinkGoogle Scholar

  • [3] De Zilwa S., Zilliac G., Reinath M. and Karabeyoglu A., “Time-Resolved Fuel-Grain Port Diameter Measurement in Hybrid Rocket,” Journal of Propulsion and Power, Vol. 20, No. 4, 2004, pp. 684–689. doi:https://doi.org/10.2514/1.2188 JPPOEL 0748-4658 LinkGoogle Scholar

  • [4] Pastrone D., Carmicino C., Casalino L. and Sentinella R., “Acoustic Analysis of Hybrid Rocket Combustion Chambers,” Journal of Propulsion and Power, Vol. 26, No. 3, 2010, pp. 415–420. doi:https://doi.org/10.2514/1.39578 JPPOEL 0748-4658 LinkGoogle Scholar

  • [5] Hessler R. O., “Passive Linear Stability Measurements,” JANNAF Combustion Meeting, Vol. 2, Chemical Propulsion Information Analysis Center, Columbia, MD, Oct. 1997, pp. 163–176. Google Scholar

  • [6] Flandro G. A. and Jacobs H. R., “Vortex Generated Sound in Cavities,” Aeroacoustics: Jet and Combustion Noise, Progress in Astronautics and Aeronautics, Vol. 37, MIT Press, Cambridge, MA, 1975, pp. 521–533. Google Scholar

  • [7] Greiner B. and Frederick R. A.,, “Experimental Investigation of Labscale Hybrid Instability,” AIAA Paper  1994-2878, June 1994. LinkGoogle Scholar

  • [8] Shadow K. C. and Gutmark E., “Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control,” Progress in Energy and Combustion Science, Vol. 18, No. 3, 1992, pp. 117–132. doi:https://doi.org/10.1016/0360-1285(92)90020-2 PECSDO 0360-1285 CrossrefGoogle Scholar

  • [9] Flandro G. A., “Vortex Driving Mechanism in Oscillatory Rocket Flows,” Journal of Propulsion and Power, Vol. 2, No. 3, 1986, pp. 206–214. doi:https://doi.org/10.2514/3.22871 JPPOEL 0748-4658 LinkGoogle Scholar

  • [10] Dunlap R. and Brown R. S., “Exploratory Experiments on Acoustic Oscillations Driven by Periodic Vortex Shedding,” AIAA Journal, Vol. 19, No. 3, 1981, pp. 408–409. doi:https://doi.org/10.2514/3.7783 AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Matveev K. I. and Culick F. E. C., “Model for Combustion Instability Involving Vortex Shedding,” Combustion Science and Technology, Vol. 175, No. 6, 2003, pp. 1059–1083. doi:https://doi.org/10.1080/00102200390201622. CBSTB9 0010-2202 CrossrefGoogle Scholar

  • [12] Tulsyan B., Balasubramanian K. and Sujith R. I., “Revisiting a Model for Combustion Instability Involving Vortex Shedding,” Combustion Science and Technology, Vol. 181, No. 3, 2009, pp. 457–482. doi:https://doi.org/10.1080/00102200802631161 CBSTB9 0010-2202 CrossrefGoogle Scholar

  • [13] Matveev K. I., “Vortex-Acoustic Instability in Chambers with Mean Flow and Heat Release,” Electronic Journal Technical Acoustics, [online journal], 2004, p. 14, available online at http://www.ejta.org/en/matveev2 [retrieved 13 May 2013]. Google Scholar

  • [14] Flandro G. A., “Effects of Vorticity on Rocket Combustion Stability,” Journal of Propulsion and Power, Vol. 11, No. 4, 1995, pp. 607–625. doi:https://doi.org/10.2514/3.23887 JPPOEL 0748-4658 LinkGoogle Scholar

  • [15] Flandro G. A., Fischbach S. R. and Majdalani J., “Nonlinear Rocket Motor Stability Prediction: Limit Amplitude, Triggering, and Mean Pressure Shift,” Physics of Fluids, Vol. 19, No. 9, 2007, Paper 094101. CrossrefGoogle Scholar

  • [16] Majdalani J., Flandro G. A. and Fischbach S. R., “Some Rotational Corrections to the Acoustic Energy Equation in Injection-Driven Enclosures,” Physics of Fluids, Vol. 17, No. 7, 2005, Paper 074102. CrossrefGoogle Scholar

  • [17] Carmicino C. and Russo Sorge A., “On the Role of Vortex Shedding in Hybrid Rockets Combustion Instability,” AIAA Paper  2008-5016, July 2008. LinkGoogle Scholar

  • [18] Carmicino C. and Russo Sorge A., “Performance Comparison Between Two Different Injector Configurations in a Hybrid Rocket,” Aerospace Science and Technology, Vol. 11, No. 1, 2007, pp. 61–67. doi:https://doi.org/10.1016/j.ast.2006.08.009 ARSTFZ 1270-9638 CrossrefGoogle Scholar

  • [19] Dènos R. and Olivari D., “Digital Data Acquisition and Processing,” Measurement Techniques in Fluid Dynamics. An Introduction, 2nd ed., von Kármán Inst. for Fluid Dynamics, Rhode-St-Genèse, Belgium, 2001, pp. 369–372. Google Scholar

  • [20] Carmicino C., Orlandi O., Russo Sorge A., Dauch F., De Amicis R. and De Rosa M., “Basic Aspects of the Hybrid Engine Operation,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, von Kármán Inst. for Fluid Dynamics, Rhode-St-Genèse, Belgium, Aug. 2009. LinkGoogle Scholar

  • [21] Culick F. E. C., “Nonlinear Behavior of Acoustic Waves in Combustion Chambers,” Acta Astronautica, Vol. 3, Nos. 9–10, 1976, pp. 714–757. AASTCF 0094-5765 Google Scholar

  • [22] Andronov A. A., Vitt A. A. and Khaikin S. E., Theory of Oscillators, Dover, New York, 1987, pp. 645–788. Google Scholar

  • [23] Carmicino C. and Russo Sorge A., “Influence of a Conical Axial Injector on Hybrid Rocket Performance,” Journal of Propulsion and Power, Vol. 22, No. 5, 2006, pp. 984–995. doi:https://doi.org/10.2514/1.19528 JPPOEL 0748-4658 LinkGoogle Scholar

  • [24] Dotson K. W., Koshigoe S. and Pace K. K., “Vortex Shedding in a Large Solid Rocket Motor Without Inhibitors at the Segment Interfaces,” Journal of Propulsion and Power, Vol. 13, No. 2, 1997, pp. 197–206. doi:https://doi.org/10.2514/2.5170 JPPOEL 0748-4658 LinkGoogle Scholar