Multiple-Frequency Phase-Lagged Unsteady Simulations of Experimental Axial Compressor
Abstract
This paper presents an evaluation of the multiple-frequency phase-lagged approach, which enables the performance of unsteady Reynolds-averaged Navier–Stokes simulations on multistage turbomachinery configurations using a time-marching method. The major advantage of this approach is to reduce the computational domain to one single blade passage per row. The first part of the paper presents the method and discusses the associated assumptions and limitations. The method is then evaluated on the axial compressor configuration “Compresseur de Recherche pour l’Etude des effets Aérodynamiques et TEchnologiques” investigated experimentally at Laboratory of Fluid Mechanics and Acoustics. The computational fluid dynamics results are analyzed and compared both with experimental data and with a reference multipassage computation based on a sliding mesh approach. These comparisons enable the highlighting of the interests of this approach but also the underlining of its limits. The multiple-frequency phase-lagged approach enables the simulation of unsteady effects on a multistage turbomachinery and access to unsteady information that would not be available with a mixing-plane approach. However, if the method is capable of capturing unsteady effects linked to the adjacent upstream and downstream blade rows passing frequency, it fails modeling clocking effects, i.e., the relative influence between rows and .
References
[1] , “Calculation of Unsteady Wake/Rotor Interactions,” 25th Aerospace Sciences Meeting, AIAA Paper 1987-0006, Reno, NV, 1987.
[2] , “Relation Between Blade Row Spacing and Potential Flow Interaction Effects in Turbomachines,” Proceedings of the Institution of Mechanical Engineers, AIAA Paper 1967-0068, 1967.
[3] , “Aero-Thermal Study of the Unsteady Flow Field in a Transonic Gas Turbine with Inlet Temperature Distortions,” Journal of Turbomachinery, Vol. 133, No. 3, 2011, Paper 031030. doi:https://doi.org/10.1115/1.4002421 JOTUEI 0889-504X
[4] , “Unsteady Strong Shock Interactions in a Transonic Turbine Experimental and Numerical Analysis,” Journal of Propulsion and Power, Vol. 24, No. 4, 2008, pp. 722–731. doi:https://doi.org/10.2514/1.34774 JPPOEL 0748-4658
[5] , “Bladerow Interactions in Low Pressure Turbines,” von Kármán Inst. for Fluid Dynamics, Lecture Series, Paper 1998-0002, Rhode-St-Genèse, Belgium, Feb. 1998.
[6] , “Time Marching Methods for Turbomachinery Flow Calculation: Application of Numerical Methods to Flow Calculations in Turbomachichines,” von Kármán Inst. for Fluid Dynamics, Lecture Series, Paper 1979-0007, Rhode-St-Genèse, Belgium, 1979.
[7] , “Simulation of Rotating Stall in a Whole Stage of an Axial Compressor,” Computers and Fluids, Vol. 39, No. 9, 2010, pp. 1644–1655. doi:https://doi.org/10.1016/j.compfluid.2010.05.017 CPFLBI 0045-7930
[8] , “Numerical Solution of Periodic Transonic Flow Through a Fan Stage,” AIAA Journal, Vol. 15, No. 11, 1977, pp. 1559–1568. doi:https://doi.org/10.2514/3.60823 AIAJAH 0001-1452
[9] , “Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations,” Journal of Propulsion and Power, Vol. 18, No. 6, 2002, pp. 1139–1152.doi:https://doi.org/10.2514/2.6065 JPPOEL 0748-4658
[10] , “The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates from Time-Accurate, Multistage, Navier–Stokes Simulations,” Journal of Turbomachinery, Vol. 130, No. 1, 2008, pp. 011009-1–011009-10. doi:https://doi.org/10.1115/1.2775486 JOTUEI 0889-504X
[11] , “Method of Simulating Unsteady Turbomachinery Flows with Multiple Perturbations,” AIAA Journal, Vol. 30, No. 11, Nov. 1992, pp. 2730–2735. AIAJAH 0001-1452
[12] , “Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion,” Journal of Turbomachinery, Vol. 124, No. 2, April 2002, pp. 285–292. doi:https://doi.org/10.1115/1.1450567 JOTUEI 0889-504X
[13] , “Toward Intra-Row Gap Optimization for One and Half Stage Transonic Compressor,” Journal of Turbomachinery, Vol. 127, No. 3, July 2005, pp. 589–598. doi:https://doi.org/10.1115/1.1928934 JOTUEI 0889-504X
[14] , “Blade Aerodynamic Damping Variation with Rotor-Stator Gap: A Computational Study Using Single-Passage Approach,” Journal of Turbomachinery, Vol. 127, No. 3, July 2005, pp. 573–579. doi:https://doi.org/10.1115/1.1928932 JOTUEI 0889-504X
[15] , “Aerodynamique 3D Instationnaire des Turbomachines Axiales Multi-Etages,” Ph.D. Thesis, PARIS 6 University, Institut Jean Le Rond d'Alembert, 2004.
[16] , “Filtered Chorochronic Interface as a Capability for 3-D Unsteady Throughflow Analysis of Multistage Turbomachinery,” International Journal of Computational Fluid Dynamics, Vol. 27, No. 2, 2013, pp. 100–117. doi:https://doi.org/10.1080/10618562.2013.772984 IJCFEC 1061-8562
[17] , Evaluation of a Multiple Frequency Phase Lagged Method for Unsteady Numerical Simulations of Multistage Turbomachinery, International Council of the Aeronautical Science, Brisbane, Australia, Sept. 2012, pp. 1–12.
[18] , “Fourier Methods for Turbomachinery Applications,” Progress in Aerospace Sciences, Vol. 46, No. 8, June 2010, pp. 329–341, doi:https://doi.org/10.1016/j.paerosci.2010.04.001 PAESD6 0376-0421
[19] , “Time-Domain Harmonic Balance Method for Aerodynamic and Aeroelastic Simulations of Turbomachinery Flows,” International Journal of Computational Fluid Dynamics, Vol. 27, No. 2, 2013, pp. 68–78. doi:https://doi.org/10.1080/10618562.2012.740021 IJCFEC 1061-8562
[20] , “Three-Dimensional Unsteady Multi-Stage Turbomachinery Simulations Using the Harmonic Balance Technique,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-0892, Jan. 2007.
[21] , “Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Non Linear Harmonic Method,” American Soc. of Mechanical Engineers Turbo Expo, ASME Paper GT2006-90210, May 2006, pp. 1227–1237. doi:https://doi.org/10.1115/GT2006-90210
[22] , “Multifrequential Harmonic Balance Computations for a Multistage Compressor,” 20th International Symposium on Air Breathing Engines, AIAA, Reston, VA, Sept. 2011, pp. 499–509; also AIAA Paper 2011-1227.
[23] , “Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations,” Journal of Computational Physics, Vol. 236, No. 1, 2013, pp. 317–345.doi:https://doi.org/10.1016/j.jcp.2012.11.010 JCTPAH 0021-9991
[24] , “Axial Flow Compressor Noise Studies,” Society of Automotive Engineers Transactions, Vol. 70, No. 1, 1962, pp. 309–332.
[25] , “Experimental and Computational Methods for Flow Investigation in High-Speed Multistage Compressor,” Journal of Propulsion and Power, Vol. 28, No. 6, 2011, pp. 1141–1155.doi:https://doi.org/10.2514/1.60562 JPPOEL 0748-4658
[26] , “A High Temperature High Bandwidth Fast Response Total Pressure Probe for Measurements in a Multistage Axial Compressor,” Journal of Engineering for Gas Turbines and Power, Vol. 134, No. 6, 2012, p. 134.doi:https://doi.org/10.1115/1.4006061 JETPEZ 0742-4795
[27] , “Reassessment of the Wall Functions Approach for RANS computations,” Aerospace Science and Technology, Vol. 5, No 1, 2001, pp. 1–14. doi:https://doi.org/10.1016/S1270-9638(00)01083-X ARSTFZ 1270-9638
[28] , “Experimental and Numerical Investigation of Unsteady Flows in a High-Speed Three Stages Compressor,” 8th European Turbomachinery Conference, von Kármán Inst. for Fluid Dynamics, Turbomachinery & Propulsion Dept., Rhode Saint Genèse, Belgium, 2009, pp. 247–266.
[29] , “The Onera elsA CFD Software: Input from Research and Feedback from Industry,” Mechanics and Industry, Vol. 14, No. 3, Jan. 2013, pp. 159–174.
[30] , “Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications,” 48th AIAA Aerospace Science Meeting and Exhibit, AIAA Paper 2008-0664, 2008.
[31] , “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. doi:https://doi.org/10.1016/0021-9991(81)90128-5 JCTPAH 0021-9991
[32] , “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models,” AIAA Journal, Vol. 26, No. 11, Nov. 1988, pp. 1299–1310.doi:https://doi.org/10.2514/3.10041 AIAJAH 0001-1452
[33] , “Interaction of Shrouded Stator Flow and Main Flow and Its Influence on Performances of a Three-Stage High Pressure Compressor,” Journal of Power and Energy, Vol. 226, No. 4, June 2012, pp. 489–500. doi:https://doi.org/10.1177/0957650911414322
[34] , “Modal Decomposition for the Analysis of the Rotor-Stator Interactions in Multistage Compressors,” Journal of Thermal Science, Vol. 21, No. 3, May 2012, pp. 276–285. doi:https://doi.org/10.1007/s11630-012-0545-2
[35] , “Aeroelastic Response of a Contrafan Stage Using Full Annulus and Single Passage Models,” Journal of Aeroelasticity and Structural Dynamics, Vol. 3, No. 2, 2014, pp. 1–30. doi:https://doi.org/10.3293/asdj.2014.30