Skip to main content
Skip to article control options
No AccessFull-Length Paper

Performance Comparison Between a Magnesium- and Xenon-Fueled 2 Kilowatt Hall Thruster

Published Online:https://doi.org/10.2514/1.B35731

The performance metrics of a 2-kW-class thruster operated using magnesium propellant were measured and compared to the performance of the same thruster operated using xenon propellant. When operated with magnesium at a 7 A discharge current, the thruster had thrust ranging from 34±0.8  mN at 200 V using 1.8  mg/s of propellant to 39±1.5  mN at 300 V using 1.8  mg/s of propellant. The thrust-to-power ratio ranged from 24±0.5  mN/kW at 200 V to 18±0.7  mN/kW at 300 V. At a 200 V discharge voltage, the specific impulse was 1930±49  s at 23±5.0% efficiency (at 7 A using 1.8  mg/s). At a 300 V discharge voltage, the specific impulse was 2420±130  s at 21±6.4% efficiency (at 5 A using 1.1  mg/s). The performance of the thruster using magnesium propellant was compared to xenon performance at matched molar propellant flow rates: 5  mg/s for xenon and 1.1  mg/s for magnesium. The xenon-fueled thruster produced 76±1.5  mN of thrust, with a specific impulse of 1550±70  s, at an efficiency of 40±2.0% compared to the magnesium-fueled thruster, which produced 27±1.2  mN of thrust, with a specific impulse of 2420±130  s, at an efficiency of 21±6.4%.

References

  • [1] Szabo J., Pote B., Paintal S., Robin M., Hillier A., Branam R. D. and Huffman R. E., “Performance Evaluation of an Iodine-Vapor Hall Thruster,” Journal of Propulsion and Power, Vol. 28, No. 4, 2012, pp. 848–857. doi:https://doi.org/10.2514/1.B34291 JPPOEL 0748-4658 LinkGoogle Scholar

  • [2] Gnedenko V. G., Petrosov V. A. and Trofimov A. V., “Prospects for Using Metals as Propellants in Stationary Plasma Engines of Hall-Type,” Proceedings of the 23rd International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  1995-54, Moscow, 1995. Google Scholar

  • [3] Makela J. M., Massey D. R. and King L. B., “Bismuth Hollow Cathode for Hall Thrusters,” Journal of Propulsion and Power, Vol. 24, No. 1, 2008, pp. 142–146. doi:https://doi.org/10.2514/1.29389 JPPOEL 0748-4658 LinkGoogle Scholar

  • [4] Tverdokhlebov S. O., Semenkin A. V. and Polk J. E., “Bismuth Propellant Option for Very High Power TAL Thruster,” 40th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2002-0348, Jan. 2002. LinkGoogle Scholar

  • [5] Makela J. M., Massey D. R., King L. B. and Fossum E. C., “Development and Testing of a Prototype Bismuth Cathode for Hall Thrusters,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2005-4236, July 2005. LinkGoogle Scholar

  • [6] Marese-Reading C., Markusic T. E., Polzin K. A., Knowles T. and Mueller J., “The Development of a Bismuth Feed System for the Very High Isp Thruster with Anode Layer VHITAL Program,” Proceedings of the 29th International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  2005-218, Princeton, NJ, Oct.–Nov. 2005. Google Scholar

  • [7] Massey D. R., “Development of a Direct Evaporation Bismuth Hall Thruster,” Ph.D. Dissertation, Mechanical Engineering–Engineering Mechanics, Michigan Technological Univ., Houghton, MI, 2008. Google Scholar

  • [8] Massey D. R., Kieckhafer A. W., Sommerville J. D. and King L. B., “Development of a Vaporizing Liquid Bismuth Anode for Hall Thrusters,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2004-3768, July 2004. LinkGoogle Scholar

  • [9] Szabo J., Robin M., Paintal S., Pote B. and Hruby V., “High Density Hall Thruster Propellant Investigations,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2012-3853, Atlanta, GA, July–Aug. 2012. LinkGoogle Scholar

  • [10] Polzin K. A., Markusic T. E., Stanojev B. J. and Marrese-Reading C., “Integrated Liquid Bismuth Propellant Feed System,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2006-4636, July 2006. LinkGoogle Scholar

  • [11] Massey D.R., King L. B. and Makela J.M., “Progress on the Development of a Direct Evaporation Bismuth Hall Thruster,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2005-4232, July 2005. LinkGoogle Scholar

  • [12] Massey D. R., King L. B. and Makela J. M., “Progress on the Development of a Direct Evaporation Bismuth Hall Thruster,” Proceedings of the 29th International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  2005-256, Princeton, NJ, Oct.–Nov. 2005. LinkGoogle Scholar

  • [13] Marese-Reading C., Sengupta A., Frisbee R., Polk J. E., Cappelli M., Boyd I., Keidar M., Tverdokhlebov S. O., Semenkin A. V., Markusic T., Yalin A. and Knowles T., “The VHITAL Program to Demonstrate the Performance and Lifetime of a Bismuth-Fueled Very High Isp Hall Thruster,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2005-4564, July 2005. LinkGoogle Scholar

  • [14] Makela J. M., Washeleski R. L., King L. B., Massey D. R. and Hopkins M. A., “Development of a Magnesium and Zinc Hall-Effect Thruster,” Journal of Propulsion and Power, Vol. 26, No. 5, 2010, pp. 1029–1035. doi:https://doi.org/10.2514/1.47410 JPPOEL 0748-4658 LinkGoogle Scholar

  • [15] Szabo J., Robin M. and Duggan J., “Light Metal Propellant Hall Thrusters,” Proceedings of the 31st International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  2009-138, Ann Arbor, MI, Sept. 2009. Google Scholar

  • [16] Hopkins M. A. and King L. B., “Active Stabilization of a Magnesium Hall Thruster in Constant Voltage Mode,” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2011-5890, July–Aug. 2011. LinkGoogle Scholar

  • [17] Hopkins M. A. and King L. B., “Demonstration of an Automated Mass Flow Control System for Condensable Propellant Hall-Effect Thrusters,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2012-3739, July–Aug. 2012. LinkGoogle Scholar

  • [18] Hopkins M. A., Makela J. M., Washeleski R. L. and King L. B., “Mass Flow Control in a Magnesium Hall-Effect Thruster,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper  2010-6861, July 2010. LinkGoogle Scholar

  • [19] Hopkins M. A. and King L. B., “Performance Characteristics of a Magnesium Hall Thruster,” Proceedings of the 32nd International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  2011-299, Wiesbaden, Germany, Sept. 2011. Google Scholar

  • [20] Hopkins M. A. and King L. B., “Magnesium Hall Thruster with Active Thermal Mass Flow Control,” Journal of Propulsion and Power, Vol. 30, No. 3, 2014, pp. 637–644. doi:https://doi.org/10.2514/1.B34888 JPPOEL 0748-4658 LinkGoogle Scholar

  • [21] Randolph T., Kim V., Kozubsky K., Zhurin V. and Day M., “Facility Effects on Stationary Plasma Thruster Testing,” Proceedings of the 23rd International Electric Propulsion Conference, IEPC Paper  93-93, Seattle, WA, Sept. 1993. Google Scholar

  • [22] Haag T. W., “Thrust Stand for Highpower Electric Propulsion Devices,” Review of Scientific Instruments, Vol. 62, No. 5, 1991, pp. 1186–1191. doi:https://doi.org/10.1063/1.1141998 RSINAK 0034-6748 CrossrefGoogle Scholar

  • [23] Xu K. G. and Walker M. L. R., “High-Power, Null-Type, Inverted Pendulum Thrust Stand,” Review of Scientific Instruments, Vol. 80, No. 5, 2009, Paper 055103-1. doi:https://doi.org/10.1063/1.3125626 RSINAK 0034-6748 CrossrefGoogle Scholar

  • [24] Sommerville J.D., “Hall-Effect Thruster—Cathode Coupling,” Ph.D. Dissertation, Mechanical Engineering–Engineering Mechanics, Michigan Technological Univ., Houghton, MI, 2009. Google Scholar