Skip to main content
Skip to article control options
No AccessTechnical Note

Investigation of Channel Interactions in Nested Hall Thruster

Published Online:https://doi.org/10.2514/1.B36352
Free first page

References

  • [1] Jankovsky R., Tverdokhlebov S. and Manzella D., “High Power Hall Thrusters,” NASA, Glenn Research Center Rept.  A99-31574, 1999. doi:https://doi.org/10.2514/6.1999-2949 Google Scholar

  • [2] Brophy J. R., Gershman R., Landau D., Yeomans D., Polk J., Porter C., Williams W., Allen C. and Asphaug E., “Asteroid Return Mission Feasibility Study,” AIAA Paper  2011-5665, July 2011. doi:https://doi.org/10.2514/6.2011-5665 LinkGoogle Scholar

  • [3] Schmidt T. D., Seboldt W. and Auweter-Kurtz M., “Flexible Piloted Mars Missions Using Continuous Electric Propulsion,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1231–1238. doi:https://doi.org/10.2514/1.17843 JSCRAG 0022-4650 LinkGoogle Scholar

  • [4] Donahue B., “Solar Electric and Nuclear Thermal Propulsion Architectures for Human Mars Missions Beginning in 2033,” AIAA Paper  2010-6819, July 2010. doi:https://doi.org/10.2514/6.2010-6819 LinkGoogle Scholar

  • [5] Brown D. L., Beal B. E. and Haas J. M., “Air Force Research Laboratory High Power Electric Propulsion Technology Development,” IEEE Aerospace Conference, Inst. of Electrical and Electronics Engineers, New York, 2010, pp. 1–9. doi:https://doi.org/10.1109/AERO.2010.5447035 Google Scholar

  • [6] Hofer R. R. and Randolph T. M., “Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems,” Journal of Propulsion and Power, Vol. 29, No. 1, 2013, pp. 166–177. doi:https://doi.org/10.2514/1.B34525 JPPOEL 0748-4658 LinkGoogle Scholar

  • [7] Liang R., “The Combination of Two Concentric Discharge Channels into a Nested Hall-Effect Thruster,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2013. Google Scholar

  • [8] Liang R. and Gallimore A. D., “Constant-Power Performance and Plume Measurements of a Nested-Channel Hall-Effect Thruster,” 32nd International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper  IEPC-2011-049, Fairview Park, OH, Sept. 2011. Google Scholar

  • [9] Liang R. and Gallimore A. D., “Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster,” AIAA Paper  2011-1016, Jan. 2011. doi:https://doi.org/10.2514/6.2011-1016 LinkGoogle Scholar

  • [10] Walker M. L. and Gallimore A. D., “Performance Characteristics of a Cluster of 5-kW Laboratory Hall Thrusters,” Journal of Propulsion and Power, Vol. 23, No. 1, 2007, pp. 35–43. doi:https://doi.org/10.2514/1.19752 JPPOEL 0748-4658 LinkGoogle Scholar

  • [11] Polk J. E., Pancotti A., Haag T., King S., Walker M., Blakely J. and Ziemer J., “Recommended Practices in Thrust Measurements,” 33rd International Electric Propulsion Conference, Paper  IEPC-2013-440, Oct. 2013. Google Scholar

  • [12] Goebel D. M. and Katz I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, 1st ed., Wiley, Hoboken, NJ, 2008. CrossrefGoogle Scholar

  • [13] Hofer R. R., Jankovsky R. S. and Gallimore A. D., “High-Specific Impulse Hall Thrusters, Part 1: Influence of Current Density and Magnetic Field,” Journal of Propulsion and Power, Vol. 22, No. 4, 2006, pp. 721–731. doi:https://doi.org/10.2514/1.15952 JPPOEL 0748-4658 LinkGoogle Scholar

  • [14] Reid B. M. and Gallimore A. D., “Near-Field Ion Current Density Measurements of a 6-kW Hall Thruster,” 31st International Electric Propulsion Conference, Paper  IEPC-2009-124, Sept. 2009. Google Scholar

  • [15] Choueiri E., “Plasma Oscillations in Hall Thrusters,” Physics of Plasmas, Vol. 8, No. 4, 2001, pp. 1411–1426. doi:https://doi.org/10.1063/1.1354644 PHPAEN 1070-664X CrossrefGoogle Scholar

  • [16] Sekerak M. J., Gallimore A. D., Brown D. L., Hofer R. R. and Polk J. E., “Mode Transitions in Hall-Effect Thrusters Induced by Variable Magnetic Field Strength,” Journal of Propulsion and Power, Vol. 32, No. 4, 2016, pp. 903–917. doi:https://doi.org/10.2514/1.B35709 Google Scholar

  • [17] Randolph T., Kim V., Kaufman H., Kozubsky K., Zhurin V. V. and Day M., “Facility Effects on Stationary Plasma Thruster Testing,” 23rd International Electric Propulsion Conference, Paper  IEPC-1993-93, Sept. 1993. Google Scholar

  • [18] Walker M. L., Victor A. L., Hofer R. R. and Gallimore A. D., “Effect of Backpressure on Ion Current Density Measurements in Hall Thruster Plumes,” Journal of Propulsion and Power, Vol. 21, No. 3, 2005, pp. 408–415. doi:https://doi.org/10.2514/1.7713 JPPOEL 0748-4658 LinkGoogle Scholar

  • [19] Walker M. L., “Effects of Facility Backpressure on the Performance and Plume of a Hall Thruster,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2005. Google Scholar

  • [20] Brown D. L., Larson C. W., Beal B. E. and Gallimore A. D., “Methodology and Historical Perspective of a Hall Thruster Efficiency Analysis,” Journal of Propulsion and Power, Vol. 25, No. 6, 2009, pp. 1163–1177. doi:https://doi.org/10.2514/1.38092 JPPOEL 0748-4658 LinkGoogle Scholar

  • [21] Brown D. L. and Gallimore A. D., “Evaluation of Facility Effects on Ion Migration in a Hall Thruster Plume,” Journal of Propulsion and Power, Vol. 27, No. 3, 2011, pp. 573–585. doi:https://doi.org/10.2514/1.B34068 JPPOEL 0748-4658 LinkGoogle Scholar

  • [22] Dankanich J. W., Walker M., Swiatek M. W. and Yim J. T., “Recommended Practice for Pressure Measurements and Calculation of Effective Pumping Speeds during Electric Propulsion Testing,” Journal of Propulsion and Power, 2016, pp. 1–13. doi:https://doi.org/10.2514/1.B35478 Google Scholar