Skip to main content
Skip to article control options
No AccessFull-Length Paper

Validation of Pulse-Detonation Operation in Low-Ambient-Pressure Environment

Published Online:https://doi.org/10.2514/1.B36401

A pulse-detonation thruster can generate a high-repeatability small impulse at a high operating frequency. To operate a pulse-detonation cycle in a vacuum environment without a purging material, a liquid-purge method proposed by Matsuoka et al. (“Development of a Liquid-Purge Method for High-Frequency Operation of Pulse Detonation Combustor,” Combustion Science and Technology, Vol. 187, No. 5, 2015, pp. 747–764) and throat at the exit of the combustor were introduced. In the demonstration experiment, gaseous ethylene–liquid nitrous oxide, as detonable mixture, and a throat having an inner diameter of 3.6 mm (blockage ratio=87%) were used. The measured cyclic flame-propagation speeds were 2005±90  m/s and 92±4% of the estimated Chapman–Jouguet detonation speed. Consequently, a 50 Hz pulse-detonation operation without a purging material in the ambient-pressure range of 0.035–1.5 kPa was confirmed. A quasi-steady model, in which gases in the combustor are in the stationary state, was newly developed to investigate the operating characteristic of the pulse-detonation thruster. The experimental pressure history in the combustor during the burned-gas blowdown process was in good agreement with that of the model. Moreover, using the model, the thrust performance of the pulse-detonation thruster with a converging–diverging nozzle was investigated. It was found that the estimated specific impulse was comparable with that of the theoretical steady-state rocket engine.

References

  • [1] Nicholls J. A., Wilkinson H. R. and Morrison R. B., “Intermittent Detonation as a Thrust-Producing Mechanism,” Jet Propulsion, Vol. 27, No. 5, 1957, pp. 534–541. doi:https://doi.org/10.2514/8.12851 JETPAV 0095-8751 LinkGoogle Scholar

  • [2] Kailasanath K., “Recent Developments in the Research on Pulse Detonation Engines,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 145–159. doi:https://doi.org/10.2514/2.1933 AIAJAH 0001-1452 LinkGoogle Scholar

  • [3] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. doi:https://doi.org/10.1016/j.pecs.2004.05.001 PECSDO 0360-1285 CrossrefGoogle Scholar

  • [4] Lee J. H. S., The Detonation Phenomena, Cambridge Univ. Press, New York, 2008, pp. 1–22. CrossrefGoogle Scholar

  • [5] Ishii K., Morita K., Okitsu Y., Sayama S. and Kataoka H., “Cellular Pattern Formation in Detonation Propagation,” Proceedings of the Combustion Institute, Vol. 34, No. 2, 2013, pp. 1903–1911. doi:https://doi.org/10.1016/j.proci.2012.07.004 CrossrefGoogle Scholar

  • [6] Endo T., Kasahara J., Matsuo A., Inaba K., Sato S. and Fujiwara T., “Pressure History at the Thrust Wall of a Simplified Pulse Detonation Engine,” AIAA Journal, Vol. 42, No. 9, 2004, pp. 1921–1930. doi:https://doi.org/10.2514/1.976 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Morris C. I., “Numerical Modeling on Single-Pulse Gas Dynamics and Performance of Pulse Detonation Rocket Engines,” Journal of Propulsion and Power, Vol. 21, No. 3, 2005, pp. 527–538. doi:https://doi.org/10.2514/1.7875 JPPOEL 0748-4658 LinkGoogle Scholar

  • [8] Wintenberger E., Austin J. M., Cooper M., Jackson S. and Shepherd J. E., “Analytical Model for the Impulse of Single-Cycle Detonation Tube,” Journal of Propulsion and Power, Vol. 19, No. 1, 2003, pp. 22–38. doi:https://doi.org/10.2514/2.6099 JPPOEL 0748-4658 LinkGoogle Scholar

  • [9] Li C. and Kailasanath K., “Partial Fuel Filling in Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 19, No. 5, 2003, pp. 908–916. doi:https://doi.org/10.2514/2.6183 JPPOEL 0748-4658 LinkGoogle Scholar

  • [10] Ma F., Choi J. H. and Yang V., “Propulsive Performance of Airbreathing Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1188–1203. doi:https://doi.org/10.2514/1.21755 JPPOEL 0748-4658 LinkGoogle Scholar

  • [11] Cooper M. and Shepherd J. E., “Single-Cycle Impulse from Detonation Tube with Nozzles,” Journal of Propulsion and Power, Vol. 24, No. 1, 2008, pp. 81–87. doi:https://doi.org/10.2514/1.30192 JPPOEL 0748-4658 LinkGoogle Scholar

  • [12] Zhdan S. A., Mitrofanov V. V. and Sychev A. I., “Reactive Impulse from the Explosion of a Gas Mixture in a Semiinfinite Space,” Combustion, Explosion, and Shock Waves, Vol. 30, No. 5, 1994, pp. 657–663. doi:https://doi.org/10.1007/BF00755833 CrossrefGoogle Scholar

  • [13] Schauer F., Stutrud J. and Bradley R., “Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications,” AIAA Paper  2001-1129, Jan. 2001. doi:https://doi.org/10.2514/6.2001-1129 CrossrefGoogle Scholar

  • [14] Kasahara J., Liang Z., Browne S. T. and Shepherd J. E., “Impulse Generation by an Open Shock Tube,” AIAA Journal, Vol. 46, No. 7, 2008, pp. 1593–1603. doi:https://doi.org/10.2514/1.27467 AIAJAH 0001-1452 LinkGoogle Scholar

  • [15] Kasahara J., Hirano M., Matsuo A., Daimon Y. and Endo T., “Thrust Measurement of a Multicycle Partially Filled Pulse Detonation Rocket Engine,” Journal of Propulsion and Power, Vol. 25, No. 6, 2009, pp. 1281–1290. doi:https://doi.org/10.2514/1.42224 JPPOEL 0748-4658 LinkGoogle Scholar

  • [16] Kasahara J., Hasegawa A., Nemoto T., Yamaguchi H., Yajima T. and Kojima T., “Performance Validation of a Single-Tube Pulse Detonation Rocket System,” Journal of Propulsion and Power, Vol. 25, No. 1, 2009, pp. 173–180. doi:https://doi.org/10.2514/1.37924 JPPOEL 0748-4658 LinkGoogle Scholar

  • [17] Matsuoka K., Morozumi T., Takagi S., Kasahara J., Matsuo A. and Funaki I., “Flight Validation of a Rotary-Valved Four-Cylinder Pulse Detonation Rocket,” Journal of Propulsion and Power, Vol. 32, No. 2, 2016, pp. 383–391. doi:https://doi.org/10.2514/1.B35739 JPPOEL 0748-4658 LinkGoogle Scholar

  • [18] Matsuoka K., Muto K., Kasahara J., Watanabe H., Matsuo A. and Endo T., “Development of High-Frequency Pulse Detonation Combustor Without Purging Material,” Journal of Propulsion and Power, Vol. 33, No. 1, 2017, pp. 43–50 (Special Section on Pressure Gain Combustion). doi:https://doi.org/10.2514/1.B36068 JPPOEL 0748-4658 LinkGoogle Scholar

  • [19] Matsuoka K., Muto K., Kasahara J., Watanabe H., Matsuo A. and Endo T., “Investigation of Fluid Motion in Valveless Pulse Detonation Combustor with High-Frequency Operation,” Proceedings of the Combustion Institute, Vol. 36, No. 2, 2017, pp. 2641–2647. doi:https://doi.org/10.1016/j.proci.2016.07.069 CrossrefGoogle Scholar

  • [20] Matsuoka K., Esumi M., Ikeguchi K., Kasahara J., Matsuo A. and Funaki I., “Optical and Thrust Measurement of a Pulse Detonation Combustor with a Coaxial Rotary Valve,” Combustion and Flame, Vol. 159, No. 3, 2012, pp. 1321–1338. doi:https://doi.org/10.1016/j.combustflame.2011.10.001 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [21] Ninomiya K., Handbook of Spacecraft Dynamics and Control from Basic Theories to Application, Baifukan, Tokyo, 2007, pp. 507–508. Google Scholar

  • [22] Wang K., Fan W., Lu W., Chen F., Zhang Q. and Yan C., “Study on a Liquid-Fueled and Valveless Pulse Detonation Rocket Engine Without the Purge Process,” Energy, Vol. 71, No. 15, 2014, pp. 605–614. doi:https://doi.org/10.1016/j.energy.2014.05.002 ENGYD4 0149-9386 Google Scholar

  • [23] Wang K., Fan W., Lu W., Zhang Q., Chen F., Yan C. and Xia Q., “Propulsive Performance of a Pulse Detonation Rocket Engine Without the Purge Process,” Energy, Vol. 79, No. 1, 2015, pp. 228–234. doi:https://doi.org/10.1016/j.energy.2014.11.017 ENGYD4 0149-9386 CrossrefGoogle Scholar

  • [24] Wu M. H. and Lu T. H., “Development of a Chemical Microthruster Based on Pulsed Detonation,” Journal of Micromechanics and Microengineering, Vol. 22, No. 10, 2012, Paper 105040. doi:https://doi.org/10.1088/0960-1317/22/10/105040 JMMIEZ 0960-1317 CrossrefGoogle Scholar

  • [25] Takagi S., Hosono K., Matsuoka K., Kasahara J., Matsuo A. and Funaki I., “Experimental Performance Evaluation of 3N-Class Pulse Detonation Thruster Using Liquid Purge Method,” AIAA Paper  2016-0122, Jan. 2016. doi:https://doi.org/10.2514/6.2016-0122 LinkGoogle Scholar

  • [26] Matsuoka K., Mukai T. and Endo T., “Development of a Liquid-Purge Method for High-Frequency Operation of Pulse Detonation Combustor,” Combustion Science and Technology, Vol. 187, No. 5, 2015, pp. 747–764. doi:https://doi.org/10.1080/00102202.2014.965300 CBSTB9 0010-2202 CrossrefGoogle Scholar

  • [27] Gordon S. and McBride B. J., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” NASA Reference Publication 1311, 1996. Google Scholar

  • [28] Lemmon E. W., Huber M. L. and McLinden M. O., “NIST Standard Reference Fluid Thermodynamic and Transport Properties (REFPROP),” Standard Reference Data Program, Ver. 9.1, National Inst. of Standards and Technology, Gaithersburg, MD, 2013. Google Scholar

  • [29] Matsuo K., Compressible Fluid Dynamics—Theory and Analysis in Internal Flow, Rikogakusha, Tokyo, 1994, pp. 86–89 (in Japanese). Google Scholar

  • [30] Cooper M., “Impulse Generation by Detonation Tubes,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 2004. Google Scholar