Skip to main content
Skip to article control options
No AccessFull-Length Paper

Improved Flamelet Modeling of Supersonic Combustion

Published Online:https://doi.org/10.2514/1.B36779

This paper has the objective of addressing a few basic issues pertaining to the use of the laminar flamelet method to model turbulence-combustion interactions in supersonic combustion. Specifically, this paper documents the way in which the use of Troe’s pressure-reaction-rate model affects the laminar flame solutions that are used in the generation of the flamelet library for supersonic combustion. For the opposed-jet model of nonpremixed flames, this study also investigates how the laminar-flamelet results obtained using the flamelet equations differ from those obtained from the canonical equations for opposed-jet flame (OJF). The differential results obtained for supersonic combustion predictions in two models of the scramjet isolator/combustor when pressure, in several formulations, is included as an independent variable of the flamelet table are also presented. Lastly, this study investigates the manner in which the use of various interpolations of the reaction progress variable from the S-curve affects turbulent supersonic combustion results. The overall goal of the various studies is to provide an improved flamelet modeling of supersonic combustion. Simulations based on linear progress variable interpolation coupled with the seven-level pressure field in the base flamelet library, using the OJF equations, appear to yield the best results.

References

  • [1] Ferri A., Libby P. A. and Zakkay A., “Theoretical and Experimental Investigation of Supersonic Combustion,” Aeronautical Research Laboratories Rept. 62-467, Wright-Patterson Air Force Base, Dayton, OH, 1962. doi:https://doi.org/10.1016/B978-0-08-010558-1.50011-6 Google Scholar

  • [2] Ferri A., “Mixing-Controlled Supersonic Combustion,” Annual Review of Fluid Mechanics, Vol. 5, No. 1, 1973, pp. 301–338. doi:https://doi.org/10.1146/annurev.fl.05.010173.001505 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [3] Smart M., “Scramjets,” The Aeronautical Journal, Vol. 111, No. 1124, 2007, pp. 605–619. doi:https://doi.org/10.1017/S0001924000004796 AENJAK 0001-9240 CrossrefGoogle Scholar

  • [4] Curran E. T., Heiser W. H. and Pratt D. T., “Fluid Phenomenon in Scramjet Combustion Systems,” Annual Review of Fluid Mechanics, Vol. 28, No. 1, 1996, pp. 323–360. doi:https://doi.org/10.1146/annurev.fl.28.010196.001543 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [5] Fry R. S., “A Century of Ramjet Propulsion Technology Evolution,” Journal of Propulsion and Power, Vol. 20, No. 1, 2004, pp. 27–58. doi:https://doi.org/10.2514/1.9178 JPPOEL 0748-4658 LinkGoogle Scholar

  • [6] Drummond J. P., “Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion,” AIAA Journal, Vol. 52, No. 3, 2014, pp. 465–485. doi:https://doi.org/10.2514/1.J052283 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Ladeinde F., “Advanced Computational-Fluid-Dynamic Techniques for Scramjet Combustion Simulation,” AIAA Journal, Vol. 48, No. 3, 2010, pp. 513–514. doi:https://doi.org/10.2514/1.48989 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Ladeinde F., Alabi K. A., Ladeinde T. A., Davis D., Satchell M. and Baurle R. A., “Enhancements for Supersonic Combustion Simulation with VULCAN,” AIAA Paper 2010-6876, July 2010. doi:https://doi.org/10.2514/6.2010-6876 LinkGoogle Scholar

  • [9] Ladeinde F., “A Critical Review of Scramjet Combustion,” AIAA Paper 2009-0036, Jan. 2009, doi:https://doi.org/10.2514/6.2009-127 Google Scholar

  • [10] Saghafian A., Shunn L., Philips D. A. and Ham F., “Large-Eddy Simulations of the HIFiRE Scramjet Using a Compressible Flamelet/Progress Variable Approach,” Proceedings of the Combustion Institute, Vol. 35, No. 2, 2015, pp. 2163–2172. doi:https://doi.org/10.1016/j.proci.2014.10.004 CrossrefGoogle Scholar

  • [11] Eklund D. R., Baurle R. A. and Gruber M. R., “Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in a Dual-Mode Combustion,” AIAA Paper 2010-0279, Jan. 2010. doi:https://doi.org/10.2514/6.2001-379 Google Scholar

  • [12] Fedina E. and Fureby C., “A Comparative Study of Flamelet and Finite Rate Chemistry LES for an Axisymmetric Dump Combustor,” Journal of Turbulence, Vol. 12, No. 24, 2011, pp. 1–20. doi:https://doi.org/10.1080/14685248.2011.582586 JTOUAO 1468-5248 Google Scholar

  • [13] Baurle R. A., Hsu A. T. and Hassan H. A., “Assumed and Evolution Probability Density Functions in Supersonic Turbulent Combustion Calculations,” Journal of Propulsion and Power, Vol. 11, No. 6, 1995, pp. 1132–1138. doi:https://doi.org/10.2514/3.23951 JPPOEL 0748-4658 LinkGoogle Scholar

  • [14] Baurle R. A. and Eklund D. R., “Analysis of Dual-Mode Hydrocarbon Scramjet Operation at Mach 4–6.5,” Journal of Propulsion and Power, Vol. 18, No. 5, 2002, pp. 990–1002. doi:https://doi.org/10.2514/2.6047 JPPOEL 0748-4658 LinkGoogle Scholar

  • [15] Xiao X., Hassan H. A. and Baurle R. A., “Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers,” AIAA Journal, Vol. 45, No. 6, 2007, pp. 1415–1423. doi:https://doi.org/10.2514/1.26382 AIAJAH 0001-1452 LinkGoogle Scholar

  • [16] Montgomery C. J., Zhao W. and Adams B. R., “Supersonic Combustion Simulations Using Reduced Chemical Kinetics Mechanisms and ISAT,” AIAA Paper 2003-3547, July 2003. doi:https://doi.org/10.2514/6.2003-3547 Google Scholar

  • [17] Peters N., “Laminar Flamelet Concepts in Turbulent Combustion,” 21st Symposium on Combustion, The Combustion Inst., Amsterdam, The Netherlands, 1986, pp. 1231–1250. Google Scholar

  • [18] Peters N., Turbulent Combustion, 1st ed., Cambridge Univ. Press, Cambridge, England, U.K., 1994, pp. 1–261. doi:https://doi.org/10.1017/CBO9780511612701 Google Scholar

  • [19] Ladeinde F., Cai X. and Sekar B., “Flamelet Studies of Reduced and Detailed Kinetic Mechanisms for Methane/Air Diffusion Flames,” Proceedings of IGTI, ASME Turbo Expo 2000, ASME Paper 2000-GT-0144, 2000. doi:https://doi.org/10.1115/2000-GT-0144 CrossrefGoogle Scholar

  • [20] Cai X. and Ladeinde F., “Performance of Sub-Grid Flamelet Model in LES of Reacting, Turbulent Flows,” DNS/LES: Progress and Challenges, edited by Liu C., Sakell L. and Beutner T., Greyden Press, Columbus, OH, 2001, pp. 299–310. Google Scholar

  • [21] Ladeinde F., Cai X., Sekar B. and Kiel B., “Application of Combined LES and Flamelet Modeling to Methane, Propane, and Jet-A Combustion,” AIAA Paper 2001-0634, Jan. 2001. doi:https://doi.org/10.2514/6.2001-634 LinkGoogle Scholar

  • [22] Ladeinde F., Safta C., Sekar B., Lynch A. and Kiel B., “Validation of Advanced Large Eddy Simulation Methods for Augmentor Application,” 53rd Joint Army-Navy-NASA-Air Force (JANNAF) Meeting, US Army, Navy, NASA and Air Force, Monterey, CA, 2005. Google Scholar

  • [23] Safta C., Alabi K., Ladeinde F. and Cai X., “A Combined Level-Set/Mixture Fraction/Progress-Variable Approach for Partially-Premixed Turbulent Reacting Flows,” AIAA Paper 2007-1436, Jan. 2007. doi:https://doi.org/10.2514/6.2007-1436 LinkGoogle Scholar

  • [24] Cai X. and Ladeinde F., “An Evaluation of the Partially-Resolved Numerical Simulation Procedure for Near-Wall Performance,” AIAA Paper 2006-115, Jan. 2006. Google Scholar

  • [25] Safta C., Alabi K. and Ladeinde F., “Level-Set Flamelet/Large-Eddy Simulation of a Premixed Augmentor Flame Holder,” AIAA Paper 2006-156, Jan. 2006. doi:https://doi.org/10.2514/6.2006-156 LinkGoogle Scholar

  • [26] Pitsch H. and Ihme M., “An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion,” AIAA Paper 2005-557, Jan. 2005. doi:https://doi.org/10.2514/6.2005-557 LinkGoogle Scholar

  • [27] Bajaj C., Ameen M. and Abraham J., “Evaluation of an Unsteady Flamelet Progress Variable Model for Autoignition and Flame Lift-Off in Diesel Jets,” Combustion Science and Technology, Vol. 185, No. 3, 2013, pp. 454–472. doi:https://doi.org/10.1080/00102202.2012.726667 CBSTB9 0010-2202 CrossrefGoogle Scholar

  • [28] Vegendla S. N. P. and Hasse C., “Steady Flamelet Progress-Variable (FPV) Modeling and Simulation of a High-Pressure Gasifier,” Energy and Fuels, Vol. 27, No. 12, 2013, pp. 7772–7777. doi:https://doi.org/10.1021/ef4014136 ENFUEH CrossrefGoogle Scholar

  • [29] Pitsch H., “Large-Eddy Simulation of Turbulent Combustion,” Annual Review of Fluid Mechanics, Vol. 38, No. 1, 2006, pp. 453–482. doi:https://doi.org/10.1146/annurev.fluid.38.050304.092133 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [30] Balakrishnan G., “Studies of Hydrogen-Air Diffusion Flames and of Compressibility Effects Related to High-Speed Propulsion,” Ph.D. Dissertation, Univ. of San Diego, San Diego, CA, 1992. Google Scholar

  • [31] Balakrishnan G. and Williams F. A., “Turbulent Combustion Regimes for Hypersonic Propulsion Employing Hydrogen-Air Diffusion Flames,” Journal of Propulsion and Power, Vol. 10, No. 3, 1994, pp. 434–437. doi:https://doi.org/10.2514/3.23754 JPPOEL 0748-4658 LinkGoogle Scholar

  • [32] Fureby C., “Comparison of Flamelet and Finite Rate Chemistry LES for Premixed Turbulent Combustion,” AIAA Paper 2007-1413, Jan. 2007. doi:https://doi.org/10.2514/6.2007-1413 LinkGoogle Scholar

  • [33] Lou Z., “Improved Flamelet Modeling of Supersonic Combustion,” Ph.D. Thesis, Stony Brook Univ., Stony Brook, NY, May 2017. Google Scholar

  • [34] Ladeinde F. and Lou Z., “Pressure Treatment in the Flamelet Modeling of Turbulent Supersonic Combustion,” AIAA Paper 2017-0342, Jan. 2017. LinkGoogle Scholar

  • [35] Cutrone L., De Palma P., Pascazio G. and Napolitano M., “A RANS Flamelet-Progress-Variable Method for Computing Reacting Flows of Real-Gas Mixtures,” Computers and Fluids, Vol. 39, No. 3, 2010, pp. 485–498. doi:https://doi.org/10.1016/j.compfluid.2009.10.001 CPFLBI 0045-7930 CrossrefGoogle Scholar

  • [36] Urzay J., Kseib N., Palacios F., Larsson J. and Iaccarino G., “A Stochastic Flamelet Progerss-Variable Approach for Numerical Simulations of High-Speed Turbulent Combustion Under Chemical-Kinetic Uncertainties,” Center for Turbulence Research Annual Research Briefs, Stanford Univ., Palo Alto, CA, 2012, pp. 12–30. Google Scholar

  • [37] Pierce C. D. and Moin P., “Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion,” Journal of Fluid Mechanics, Vol. 504, April 2004, pp. 73–97. doi:https://doi.org/10.1017/S0022112004008213 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [38] Saghafian A., Terrapon V. E. and Pitsch H., “An Efficient Flamelet-Based Combustion Model for Compressible Flows,” Combustion and Flame, Vol. 162, No. 3, 2015, pp. 652–667. doi:https://doi.org/10.1016/j.combustflame.2014.08.007 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [39] Quinlan J., Drozda T. G., McDaniel J. C., Lacaze G. and Oefelein J. C., “A Priori Analysis of a Compressible Flamelet Model Using RANS Data for a Dual-Mode Scramjet Combustor,” AIAA Paper 2015-3208, June 2015. doi:https://doi.org/10.2514/6.2015-3208 LinkGoogle Scholar

  • [40] Ladeinde F., Lou Z. and Li W., “In Search of Reaction Rate Scaling Law for Supersonic Combustion,” Bulletin of the American Physical Society, Vol. 60, No. 21, 2015, Paper E6.00005. BAPSA6 0003-0503 Google Scholar

  • [41] Ladeinde F. and Lou Z., “Scaling of Flamelet Calculation of Turbulent Supersonic Combustion,” AIAA Propulsion and Energy, AIAA Paper 2016-4567, July 2016. doi:https://doi.org/10.2514/6.2016-4567 LinkGoogle Scholar

  • [42] Ladeinde F. and Lou Z., “Pressure Treatment in the Flamelet Modeling of Turbulent Supersonic Combustion,” AIAA Paper 2017-0342, Jan. 2017. doi:https://doi.org/10.2514/6.2017-0342 LinkGoogle Scholar

  • [43] Ladeinde F. and Lou Z., “Pressure Modeling in Supersonic Combustion,” Proceedings of Asian Joint Conference on Propulsion and Power (AJCPP), The Japan Soc. of Aeronautical and Space Sciences, Tokyo, Japan, March 2016. Google Scholar

  • [44] Pitsch H., “FlameMaster v3.1: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations,” 1998, http://www.stanford.edu/group/pitsch/ [retrieved 10 Jan. 2010] Google Scholar

  • [45] Yoon Y., Donbar J. M., Huh H. and Driscoll J. F., “Measured Supersonic Flame Properties-Heat-Release Patterns, Pressure Losses, Thermal Choking Limits,” Journal of Propulsion and Power, Vol. 12, No. 4, 1996, pp. 718–723. doi:https://doi.org/10.2514/3.24093 JPPOEL 0748-4658 LinkGoogle Scholar

  • [46] Choi J. Y., Ma F. and Yang V., “Combustion Oscillations in a Scramjet Engine Combustor with Transverse Fuel Injection,” Proceedings of the Combustion Institute, Vol. 30, No. 2, 2005, pp. 2851–2858. doi:https://doi.org/10.1016/j.proci.2004.08.250 CrossrefGoogle Scholar

  • [47] Bilger R. W., Stårner S. H. and Kee R. J., “On Reduced Mechanisms for Methane-Air Combustion in Non-Premixed Flames,” Combustion and Flame, Vol. 80, No. 2, 1990, pp. 135–149. doi:https://doi.org/10.1016/0010-2180(90)90122-8 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [48] Cook A. W. and Riley J. J., “A Subgrid Model for Equilibrium Chemistry in Turbulent Flows,” Physics of Fluids, Vol. 6, No. 8, 1994, pp. 2868–2870. doi:https://doi.org/10.1063/1.868111 CrossrefGoogle Scholar

  • [49] Gaitonde D. and Visbal M. R., “High-Order Schemes for Navier–Stokes Equations: Algorithm and Implementation into FDL3DI,” Technical Rept. AFRL VA-WP-TR-1998-3060, Wright-Patterson Air Force Base, Dayton, OH, 1998. CrossrefGoogle Scholar

  • [50] Ladeinde F., Cai X. C., Alabi K. and Safta C., “The First High-Order CFD Simulation of Aircraft: Challenges and Opportunities,” AIAA Paper  2006-1526, Jan. 2006. doi:https://doi.org/10.2514/6.2006-1526 Google Scholar

  • [51] Kee R. J., Rupley F. M. and Miller J. A., “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National Labs. Rept.  SAND-89-8009, Livermore, CA, 1989. CrossrefGoogle Scholar

  • [52] Pitsch H. and Peters N., “A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects,” Combustion and Flame, Vol. 114, No. 1, 1998, pp. 26–40. doi:https://doi.org/10.1016/S0010-2180(97)00278-2 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [53] Klimenko A. Y., “Multicomponent Diffusion of Various Admixtures in Turbulent Flow,” Fluid Dynamics, Vol. 25, No. 3, 1990, pp. 327–334. doi:https://doi.org/10.1007/BF01049811 FLDYAH 0015-4628 CrossrefGoogle Scholar

  • [54] Seshadri K. and Williams F. A., “Laminar Flow Between Parallel Plates with Injection of a Reactant at High Reynolds Number,” International Journal of Heat and Mass Transfer, Vol. 21, No. 2, 1978, pp. 251–253. doi:https://doi.org/10.1016/0017-9310(78)90230-2 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [55] Lutz A. E., Kee R. J., Grcar J. F. and Rupley F. M., “OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames,” Sandia National Labs. Rept.  SAND–96-8243, Livermore, CA, 1997. CrossrefGoogle Scholar

  • [56] Gilbert R. G., Luther K. and Troe J., “Theory of Thermal Unimolecular Reactions in the Fall-Off Range. II. Weak Collision Rate Constants,” Berichte der Bunsengesellschaft für Physikalische Chemie, Vol. 87, No. 2, 1983, pp. 169–177. doi:https://doi.org/10.1002/bbpc.19830870218 CrossrefGoogle Scholar

  • [57] Conaire Ó., Curran M., Simmie H. J., Pitz J. M. and Westbrook C. K., “A Comprehensive Modeling Study of Hydrogen Oxidation,” International Journal of Chemical Kinetics, Vol. 36, No. 11, 2004, pp. 603–622. doi:https://doi.org/10.1002/kin.v36:11 IJCKBO 0538-8066 CrossrefGoogle Scholar

  • [58] Ihme M., Shunn L. and Zhang J., “Regularization of Reaction Progress Variable for Application to Flamelet-Based Combustion Models,” Journal of Computational Physics, Vol. 231, No. 23, 2012, pp. 7715–7721. doi:https://doi.org/10.1016/j.jcp.2012.06.029 CrossrefGoogle Scholar

  • [59] Driscoll J. F., Huh H., Yoon Y. and Donbar J., “Measured Lengths of Supersonic Hydrogen-Air Jet Flames-Compared to Subsonic Flame Lengths-and Analysis,” Combustion and Flame, Vol. 107, No. 1, 1996, pp. 176–186. doi:https://doi.org/10.1016/0010-2180(96)00048-X CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [60] Shapiro A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, The Ronald Press Company, New York, 1958, pp. 190–218. doi:https://doi.org/10.1002/zamm.19550350511 Google Scholar

  • [61] Bonfiglioli A. and Paciorri R., “Convergence Analysis of Shock-Capturing and Shock-Fitting Solutions on Unstructured Grids,” AIAA Journal, Vol. 52, No. 7, 2014, pp. 1404–1416. doi:https://doi.org/10.2514/1.J052567 AIAJAH 0001-1452 LinkGoogle Scholar

  • [62] Safta C., Alabi K., Ladeinde F., Cai X., Kiel B. and Sekar B., “Comparative Advantages of High-Order Schemes for Subsonic, Transonic, and Supersonic Flows,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2006-299, Jan. 2006. doi:https://doi.org/10.2514/6.2006-299 LinkGoogle Scholar

  • [63] Poinsot T. and Veynante D., Theoretical and Numerical Combustion, RT Edwards Inc. Publ., Philadephia, PA, 2005, pp. 287–348. Google Scholar