Skip to main content

PLEASE NOTE: We are currently experiencing issues with articles from the AIAA Journal not adding to our shopping cart (for transactional sales of individual articles only). This ONLY affects the AIAA Journal. All other journal titles should work as expected. We apologize for this inconvenience. Please contact [email protected] for help with any urgent article requests. Thank you.

No AccessFull-Length Papers

High Pressure Fuel Regression Characteristics of Axial-Injection End-Burning Hybrid Rockets

Published Online:https://doi.org/10.2514/1.B37135

This study is an investigation of axial-injection end-burning hybrid rockets aimed at revealing fuel regression characteristics under relatively high-pressure conditions. Firing tests are conducted using gaseous oxygen as the oxidizer at chamber pressures and oxidizer port velocities ranging from 0.22 to 1.05 MPa and 31 to 103  m/s, respectively. The results of 15 static firing tests show that the fuel regression rate increases as the chamber pressure increases, and regression rates range from approximately 1.1  mm/s at 0.25 MPa to 5.5  mm/s at 0.90 MPa. Furthermore, it is observed that the pressure exponent of the fuel regression rate is 1.05 and the fuel regression rate is not influenced by the oxidizer port velocity in this study. The model explains that the backfiring problem tends to occur in relatively high-pressure conditions, and it leads to the conclusion that increasing the nozzle throat diameter is an effective means of preventing backfiring from occurring.

References

  • [1] Chiaverini M., “Review of Solid-Fuel Regression,” Fundamentals of Hybrid Rocket Combustion and Propulsion,” Fundamentals of Hybrid Rocket Propulsion, Vol. 218, Progress in Astronautics and Aeronautics, edited by Chiaverini M. and Kuo K., AIAA, Reston, VA, 2007, pp. 37–125. Google Scholar

  • [2] Karabeyoglu A., Toson E. and Evans B., “O/F Shift in Hybrid Rockets,” AIAA Paper 2014-3851, July 2014. doi:https://doi.org/10.2514/6.2014-3851 Google Scholar

  • [3] Barato F., Grosse M. and Bettella A., “Hybrid Rocket Fuel Residuals–An Overlooked Topic,” AIAA Paper 2014-3753, July 2014. doi:https://doi.org/10.2514/6.2014-3753 LinkGoogle Scholar

  • [4] Nagata H., Okada K., Sanda T., Kato T., Akiba R., Satori S. and Kudo I., “Combustion Characteristics of Fibrous Fuels for Dry Towel Hybrid Rocket Motor,” Journal of Space Technology and Science, Vol. 13, No. 1, 1997, pp. 11–16. doi:https://doi.org/10.11230/jsts.13.1_11 Google Scholar

  • [5] Kato T., Hashimoto N., Nagata H., Akiba R. and Kudo I., “A Preliminary Study of End-Burning Hybrid Rocket, Part 1: Combustion Stability,” Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 49, No. 565, 2001, pp. 33–39. doi:https://doi.org/10.2322/jjsass.49.33 NKGAB8 0021-4663 CrossrefGoogle Scholar

  • [6] Hashimoto N., Kato T., Nagata H., Akiba R. and Kudo I., “A Preliminary Study of End-Burning Hybrid Rocket, Part 2: Combustion Characteristics,” Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 49, No. 565, 2001, pp. 40–47. doi:https://doi.org/10.2322/jjsass.49.40 NKGAB8 0021-4663 CrossrefGoogle Scholar

  • [7] Hashimoto N., “End-Burning Type Hybrid Rocket,” Ph.D. Dissertation, Hokkaido Univ., Sapporo, Japan, 2004. Google Scholar

  • [8] Saito Y., Yokoi T., Yasukochi H., Soeda K., Totani T., Wakita W. and Nagata H., “Fuel Regression Characteristics of a Novel Axial-Injection End-Burning Hybrid Rocket,” Journal of Propulsion and Power, Vol. 34, No. 1, 2018, pp. 247–259. doi:https://doi.org/10.2514/1.B36369 JPPOEL 0748-4658 LinkGoogle Scholar

  • [9] Hitt A. M. and Frederick A. R., “Testing and Modeling of a Porous Axial-Injection, End-Burning Hybrid Motor,” Journal of Propulsion and Power, Vol. 32, No. 4, 2016, pp. 834–843. doi:https://doi.org/10.2514/1.B35939 JPPOEL 0748-4658 LinkGoogle Scholar

  • [10] Nagata H., Teraki H., Saito Y., Kanai R., Yasukochi H., Wakita M. and Totani T., “Verification Firings of End-Burning Type Hybrid Rockets,” Journal of Propulsion and Power, Vol. 33, No. 6, 2017, pp. 1473–1477. doi:https://doi.org/10.2514/1.B36359 JPPOEL 0748-4658 LinkGoogle Scholar

  • [11] Saito Y., Yokoi T., Tsuji A., Omura K., Yasukochi H., Soeda G., Totani T., Wakita W. and Nagata H., “Investigation of the Throttling Characteristics of Axial-Injection End-Burning Hybrid Rockets,” Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 65, No. 4, 2017, pp. 157–167. doi:https://doi.org/10.2322/jjsass.65.157 NKGAB8 0021-4663 CrossrefGoogle Scholar

  • [12] Saito Y., Kimino M., Tsuji A., Omura K., Yasukochi H., Soeda K., Totani T., Wakita M. and Nagata H., “Investigation of Throttling Response Characteristics of Axial-Injection End-Burning Hybrid Rockets,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology, Vol. 16, No. 1, Japan ISTS Special Issue: Selected Papers from the 31st International Symposium on Space Technology and Science, 2018, pp. 9–18. doi:https://doi.org/10.2322/tastj.16.9 CrossrefGoogle Scholar

  • [13] Kamps L., Saito Y., Kawabata R., Wakita M., Totani T., Takahashi Y. and Nagata H., “Method for Determining Nozzle-Throat-Erosion History in Hybrid Rockets,” Journal of Propulsion and Power, Vol. 33, No. 6, 2017, pp. 1369–1377. doi:https://doi.org/10.2514/1.B36390 JPPOEL 0748-4658 LinkGoogle Scholar

  • [14] Nagata H., Nakayama H., Watanabe M., Wakita M. and Totani T., “Accuracy and Applicable Range of a Reconstruction Technique for Hybrid Rockets,” Advances in Aircraft and Spacecraft Science, Vol. 1, No. 3, 2014, pp. 273–289. doi:https://doi.org/10.12989/aas.2014.1.3.273 CrossrefGoogle Scholar

  • [15] Gordon S. and McBride B. J., “Computer Program for Calculation of. Complex Chemical Equilibrium,” NASA Reference Publication RP-1311, 1994. Google Scholar

  • [16] Carmicino C. and Russo Sorge A., “Influence of a Conical Axial Injector on Hybrid Rocket Performance,” Journal of Propulsion and Power, Vol. 22, No. 5, 2006, pp. 984–995. doi:https://doi.org/10.2514/1.19528 JPPOEL 0748-4658 LinkGoogle Scholar

  • [17] Frederick R. A. and Greiner B. E., “Laboratory-Scale Hybrid Rocket Motor Uncertainty Analysis,” Journal of Propulsion and Power, Vol. 12, No. 3, 1996, pp. 605–611. doi:https://doi.org/10.2514/3.24076 JPPOEL 0748-4658 LinkGoogle Scholar

  • [18] Hashimoto N., Nagata H., Totani T. and Kudo I., “Determining Factor for the Blowoff Limit of a Flame Spreading in an Opposed Turbulent Flow, in a Narrow Solid-Fuel Duct,” Combustion and Flame, Vol. 147, No. 3, 2006, pp. 222–232. doi:https://doi.org/10.1016/j.combustflame.2006.07.015 CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [19] Matsuoka T., Murakami S. and Nagata H., “Transition Characteristics of Combustion Modes for Flame Spread in Solid Fuel Tube,” Combustion and Flame, Vol. 159, No. 7, 2012, pp. 2466–2473. doi:https://doi.org/10.1016/j.combustflame.2012.03.001 CBFMAO 0010-2180 CrossrefGoogle Scholar