Skip to main content
Skip to article control options
No AccessFull-Length Papers

Organically-Capped, Nanoscale Alkali Metal Hydride and Aluminum Particles as Solid Propellant Additives

Published Online:

This Paper reports on organometallic composites, containing nanoscale aluminum and lithium-based hydride fuel particles, as solid propellant additives. Theoretical performance is evaluated for bimodal metal propellant formulations containing capped fuel additives (nanoMetallix LLC) and 32  μm aluminum. Replacing aluminum with nanoMetallix capped fuel additives reduces specific impulse, adiabatic flame temperature, condensed-phase products, and hydrochloric acid. Combustion behavior is investigated using high-speed video techniques, including flame emission, laser backlit configurations, and a two-camera ratiometric bandpass emission technique used to detect lithium. Agglomeration behavior of the nanoMetallix particles at atmospheric pressure is similar to nanoaluminum (nAl), producing large aggregates that ignite quickly, increasing radiative heat feedback. Spectrally filtered video identifies lithium vapor around the nanoMetallix particles on and above the burning surface, suggesting lithium vapor is released close to the surface. Pressurized burning rate measurements indicate nanoMetallix-based propellant burning rates are up to approximately 14% higher than similar nAl-based propellants at and below 6.89 MPa. Above this pressure, nanoMetallix propellants exhibit plateau pressure dependence, likely an effect of the different capping agents used. This Paper shows organically-capped nanoscale particles are a promising alternative to nano/microaluminum in composite solid propellant formulations.


  • [1] Dokhan A., Price E. W., Seitzman J. M. and Sigman R. K., “The Effects of Bimodal Aluminum with Ultrafine Aluminum on the Burning Rates of Solid Propellants,” Proceedings of the Combustion Institute, Vol. 29, No 2, 2002, pp. 2939–2945. doi: CrossrefGoogle Scholar

  • [2] Price E. W. and Sigman R. K., “Combustion of Aluminized Solid Propellants,” Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, edited by Brill T. B., Ren W.-Z. and Yang V., Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 1999, pp. 227–248. Google Scholar

  • [3] Beckstead M. W., “A Summary of Aluminum Combustion,” Brigham Young Univ. RTO EN-023, Provo, UT, 2004. doi: Google Scholar

  • [4] Price E. W., Sigman R. K., Sambarmurthi J. K. and Park C. J., “Behavior of Aluminum in Solid Propellant Combustion,” Georgia Inst. of Technology AFOSR-TR-82-0964, Atlanta, GA, 1982. Google Scholar

  • [5] Sambamurthi J. K., Price E. W. and Sigmanj R. K., “Aluminum Agglomeration in Solid-Propellant Combustion,” AIAA Journal, Vol. 22, No. 8, 1984, pp. 1132–1138. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [6] Lengellé G., Duterque J. and Trubert J. F., “Combustion of Solid Propellants,” ONERA RTO-EN-023-4, 2002. Google Scholar

  • [7] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, Wiley, Hoboken, NJ, 2017, p. 89. Google Scholar

  • [8] Cheung H. and Cohen N. S., “Performance of Solid Propellants Containing Metal Additives,” AIAA Journal, Vol. 3, No. 2, 1965, pp. 250–257. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [9] Babuk V., Dolotkazin I., Gamsov A., Glebov A., Deluca L. T. and Galfetti L., “Nanoaluminum as a Solid Propellant Fuel,” Journal of Propulsion and Power, Vol. 25, No. 2, 2009, pp. 482–489. doi: JPPOEL 0748-4658 LinkGoogle Scholar

  • [10] De Luca L. T., Galfetti L., Severini F., Meda L., Marra G., Vorozhtsov A. B., Sedoi V. S. and Babuk V. A., “Burning of Nano-Aluminized Composite Rocket Propellants,” Combustion, Explosion, and Shock Waves, Vol. 41, No. 6, 2005, pp. 680–692. doi: CrossrefGoogle Scholar

  • [11] Yetter R. A., Risha G. A. and Son S. F., “Metal Particle Combustion and Nanotechnology,” Proceedings of the Combustion Institute, Vol. 32, No. 2, 2009, pp. 1819–1838. doi: CrossrefGoogle Scholar

  • [12] Simonenko V. N. and Zarko V. E., “Comparative Studying the Combustion Behavior of Composite Propellants Containing Ultra Fine Aluminum,” 30th International Annual Conference of ICT, Karlsruhe, Germany, 1999, p. 21. Google Scholar

  • [13] Luman J. R., Wehrman B., Kuo K. K., Yetter R. A., Masoud N. M., Manning T. G., Harris L. E. and Bruck H. A., “Development and Characterization of High Performance Solid Propellants Containing Nano-Sized Energetic Ingredients,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2089–2096. doi: CrossrefGoogle Scholar

  • [14] Meda L., Marra G., Galfetti L., Severini F. and De Luca L., “Nano-Aluminum as Energetic Material for Rocket Propellants,” Materials Science and Engineering: C, Vol. 27, No. 5, 2007, pp. 1393–1396. doi: CrossrefGoogle Scholar

  • [15] Sundaram D. S., Puri P. and Yang V., “Pyrophoricity of Nascent and Passivated Aluminum Particles at Nano-Scales,” Combustion and Flame, Vol. 160, No. 9, 2013, pp. 1870–1875. doi: CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [16] Risha G. A., Son S. F., Yetter R. A., Yang V. and Tappan B. C., “Combustion of Nano-Aluminum and Liquid Water,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2029–2036. doi: CrossrefGoogle Scholar

  • [17] Sundaram D. S., Yang V. and Zarko V. E., “Combustion of Nano Aluminum Particles (Review),” Combustion, Explosion, and Shock Waves, Vol. 51, No. 2, 2015, pp. 173–196. doi: CrossrefGoogle Scholar

  • [18] Foley T. J., Johnson C. E. and Higa K. T., “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chemistry of Materials, Vol. 17, No. 16, 2005, pp. 4086–4091. doi: CMATEX 0897-4756 CrossrefGoogle Scholar

  • [19] Andrzejak T. A., Shafirovich E. and Varma A., “Ignition Mechanism of Nickel-Coated Aluminum Particles,” Combustion and Flame, Vol. 150, No. 1, 2007, pp. 60–70. doi: CBFMAO 0010-2180 CrossrefGoogle Scholar

  • [20] Gromov A., Ilyin A., Fçrter-Barth U. and Teipel U., “Characterization of Aluminum Powders: II. Aluminum Nanopowders Passivated by Non-Inert Coatings,” Propellants Explosives Pyrotechnics, Vol. 31, No. 5, 2006, pp. 401–409. doi: CrossrefGoogle Scholar

  • [21] Kappagantula K. S., Farley C., Pantoya M. L. and Horn J., “Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels,” Journal of Physical Chemistry C, Vol. 116, No. 46, 2012, pp. 24469–24475. doi: CrossrefGoogle Scholar

  • [22] Jouet R. J., Warren A. D., Rosenberg D. M., Bellitto V. J., Park K. and Zachariah M. R., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chemistry of Materials, Vol. 17, No. 11, 2005, pp. 2987–2996. doi: CMATEX 0897-4756 CrossrefGoogle Scholar

  • [23] Fernando K. A. S., Smith M. J., Harruff B. A., Lewis W. K., Guliants E. A. and Bunker C. E., “Sonochemically Assisted Thermal Decomposition of Alane N,N-Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum Core-Shell Nanoparticles,” Journal of Physical Chemistry C, Vol. 113, No. 2, 2008, pp. 500–503. doi: CrossrefGoogle Scholar

  • [24] Jelliss P. A., Buckner S. W., Chung S. W., Patel A., Guliants E. A. and Bunker C. E., “The Use of 1,2-Epoxyhexane as a Passivating Agent for Coreeshell Aluminum Nanoparticles with Very High Active Aluminum Content,” Solid State Sciences, Vol. 23, Sept. 2013, pp. 8–12. doi: SSSCFJ 1293-2558 CrossrefGoogle Scholar

  • [25] Hammerstroem D. W., Burgers M. A., Chung S. W., Guliants E. A., Bunker C. E., Wentz K. M., Hayes S. E., Buckner S. W. and Jelliss P. A., “Aluminum Nanoparticles Capped by Polymerization of Alkyl-Substituted Epoxides: Ratio-Dependent Stability and Particle Size,” Inorganic Chemistry, Vol. 50, No. 11, 2011, pp. 5054–5059. doi: INOCAJ 0020-1669 CrossrefGoogle Scholar

  • [26] Jayaraman K., Chakravarthy S. R. and Sarathi R., “Quench Collection of Nano-Aluminium Agglomerates from Combustion of Sandwiches and Propellants,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 1941–1947. doi: Google Scholar

  • [27] Shark S. C., Sippel T. R., Son S. F., Heister S. D., Pourpoint T. L. and Lafayette W., “Theoretical Performance Analysis of Metal Hydride Fuel Additives for Rocket Propellant Applications,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, AIAA Paper 2011-5556, 2011. doi: LinkGoogle Scholar

  • [28] Beighley C. M., Fish W. R. and Anderson R. E., “Advanced Fuels and Oxidizers,” Space Engineering, Astrophysics and Space Science Library, Vol. 15, Springer–Verlag, Dordrecht, The Netherlands, 1970, pp. 163–189 doi: CrossrefGoogle Scholar

  • [29] Flynn J., Lane G. and Plomer J., Dow Chemical Co., Midland, MI, U.S. Patent Application for “Nitrocellulose Propellant Composition Containing Aluminum Hydride,” Docket No. US3844856A, filed 16 June 1965. Google Scholar

  • [30] Chan M. L., Reed R. and Ciaramitaro D. A., “Advances in Solid Propellant Formulations,” Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, edited by Brill T. B., Ren, and W.-Z. and Yang V., Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2000, pp. 185–206. doi: Google Scholar

  • [31] DeLuca L., Galfetti L., Severini F., Rossettini L., Meda L., Marra G., Weiser V., Calabro M., Vorozhtsov A. and Glazunov A., “Physical and Ballistic Characterization of AlH3-Based Space Propellants,” Aerospace Science and Technology, Vol. 11, No. 1, 2007, pp. 18–25. doi: CrossrefGoogle Scholar

  • [32] Maggi F., Gariani G., Galfetti L. and Deluca L. T., “Theoretical Analysis of Hydrides in Solid and Hybrid Rocket Propulsion,” International Journal of Hydrogen, Vol. 37, No. 2, 2012, pp. 1760–1769. doi: IJHEDX 0360-3199 CrossrefGoogle Scholar

  • [33] Sakintuna B., Lamari-Darkrim F. and Hirscher M., “Metal Hydride Materials for Solid Hydrogen Storage: A Review,” International Journal of Hydrogen Energy, Vol. 32, No. 9, 2007, pp. 1121–1140. doi: IJHEDX 0360-3199 CrossrefGoogle Scholar

  • [34] Gibb T. R. P., Metal Hydrides, Inc., Marblehead, MA, U.S. Patent Application for “Coated Metal Hydride,” Docket No. US2513997A, filed 30 June 1948. Google Scholar

  • [35] Egert C. M., Lockheed Martin Corp., Oak Ridge, TN, U.S. Patent Application for “Protective Coatings for Sensitive Materials,” Docket No. US5654084A, filed 22 July 1994. Google Scholar

  • [36] Bastea S., Fried L. E., Glaesemann K. R., Howard W. M., Kuo I. W., Souers P. C. and Vitello P. A., “Cheetah 8.0 User’s Manual,” LLNL-SM-677152, Livermore, CA, 2015. Google Scholar

  • [37] Kubota N., Propellants and Explosives: Thermochemical Aspects of Combustion, Wiley-VCH, Weinheim, Germany, 2007, pp. 455–456. Google Scholar

  • [38] Kwon Y.-S., Gromov A. A. and Strokova J. I., “Passivation of the Surface of Aluminum Nanopowders by Protective Coatings of the Different Chemical Origin,” Applied Surface Science, Vol. 253, No. 12, 2007, pp. 5558–5564. doi: ASUSEE 0169-4332 CrossrefGoogle Scholar

  • [39] Terry B. C., Sippel T. R., Pfeil M. A., Gunduz I. and Son S. F., “Removing Hydrochloric Acid Exhaust Products from High Performance Solid Rocket Propellant Using Aluminum-Lithium Alloy,” Journal of Hazardous Materials, Vol. 317, Nov. 2016, pp. 259–266. doi: JHMAD9 0304-3894 CrossrefGoogle Scholar

  • [40] Glassman I., Yetter R. A. and Glumac N., Combustion, Academic Press, Waltham, MA, 2015, pp. 503–510. Google Scholar

  • [41] Jayaraman K., Anand K. V., Chakravarthy S. R. and Sarathi R., “Effect of Nano-Aluminium in Plateau-Burning and Catalyzed Composite Solid Propellant Combustion,” Combustion and Flame, Vol. 156, No. 8, 2009, pp. 1662–1673. doi: CBFMAO 0010-2180 CrossrefGoogle Scholar