Skip to main content
Skip to article control options
No AccessFull-Length Papers

Radioisotope Thermophotovoltaic Generator Design Methods and Performance Estimates for Space Missions

Published Online:https://doi.org/10.2514/1.B37623

This work provides the design methodology of a radioisotope thermophotovoltaic system (RTPV) using spectral control for space missions. The focus is on the feasibility of a practical system by using two-dimensional micropatterned photonic crystal emitters, selecting the proper thermophotovoltaic cell and insulation material to exclude material incompatibilities, to optimize the system efficiency by impedance matching and to design a radiator with minimum mass. In the last section, a design example is presented based on the tested indium gallium arsenide antimonide (InGaAsSb) cells. It is shown computationally that, in using the experimentally tested InGaAsSb cells, the RTPV generator is expected to reach an efficiency of 8.6% and a specific power of 10.1  W/kg with advanced radiators. Using the more efficient InGaAs cells, the system can expect to triple the figure of merits of the radioisotope thermoelectric generator, promising to reach 18% and 21  W/kg, respectively. With a high performance device, the results of this work can lead to a functional prototype for further research focusing on manufacturability and reliability.

References

  • [1] Angelo J. A. and Buden D., “Radioisotope Space Power Generators,” Space Nuclear Power, Orbit, a Foundation Series, Orbit, Malabar, FL, 1985, pp. 133–157. Google Scholar

  • [2] Rinehart G. H., “Design Characteristics and Fabrication of Radioisotope Heat Sources for Space Missions,” Progress in Nuclear Energy, Vol. 39, Nos. 3–4, 2001, pp. 305–319. https://doi.org/10.1016/S0149-1970(01)00005-1 Google Scholar

  • [3] Hu Y., Wang J., Kawamura A., Kovnir K. and Kauzlarich S. M., “Yb14MgSb11 and Ca14MgSb11—New Mg-Containing Zintl Compounds and Their Structures, Bonding, and Thermoelectric Properties,” Chemistry of Materials, Vol. 27, No. 1, 2014, pp. 343–351. https://doi.org/10.1021/cm504059t Google Scholar

  • [4] Lange R. G. and Carroll W. P., “Review of Recent Advances of Radioisotope Power Systems,” Energy Conversion and Management, Vol. 49, No. 3, 2008, pp. 393–401. https://doi.org/10.1016/j.enconman.2007.10.028 Google Scholar

  • [5] El-Genk M. S. and Tournier J. M., “AMTEC/TE Static Converters for High Energy Utilization, Small Nuclear Power Plants,” Energy Conversion and Management, Vol. 45, No. 4, 2004, pp. 511–535. https://doi.org/10.1016/S0196-8904(03)00159-6 CrossrefGoogle Scholar

  • [6] Siergiej R., Wernsman B., Derry S., Mahorter R., Wehrer R., Link S., Palmisiano M., Messham R., Murray S., Murray C. and et al., “20% Efficient InGaAs/InPAs Thermophotovoltaic Cells,” AIP Conference Proceedings, Vol. 653, No. 1, 2003, pp. 414–423. https://doi.org/10.1063/1.1539396 Google Scholar

  • [7] Chan W. R., Stelmakh V., Ghebrebrhan M., Soljačić M., Joannopoulos J. D. and Čelanović I., “Enabling Efficient Heat-to-Electricity Generation at the Mesoscale,” Energy & Environmental Science, Vol. 10, No. 6, 2017, pp. 1367–1371. https://doi.org/10.1039/C7EE00366H Google Scholar

  • [8] Yeng Y. X., Chan W. R., Rinnerbauer V., Stelmakh V., Senkevich J. J., Joannopoulos J. D., Soljacic M. and Čelanović I., “Photonic Crystal Enhanced Silicon Cell Based Thermophotovoltaic Systems,” Optics Express, Vol. 23, No. 3, 2015, pp. A157–168. https://doi.org/10.1364/OE.23.00A157 Google Scholar

  • [9] Datas A. and Martí A., “Thermophotovoltaic Energy in Space Applications: Review and Future Potential,” Solar Energy Materials and Solar Cells, Vol. 161, March 2017, pp. 285–296. https://doi.org/10.1016/j.solmat.2016.12.007 CrossrefGoogle Scholar

  • [10] Strauch J. E., Klein A., Charles P., Murray C. and Du M., “General Atomics Radioisotope Fueled Thermophotovoltaic Power Systems for Space Applications,” AIAA Paper 2015-4114, July 2015. https://doi.org/10.2514/6.2015-4114 Google Scholar

  • [11] Anderson D. J., “NASA Radioisotope Power Conversion Technology NRA Overview,” NASA TM-2005-213981, Nov. 2005. https://doi.org/10.1063/1.1867158 Google Scholar

  • [12] Babiker S. G., Shuai Y., Sid-Ahmed M. O. and Xie M., “One-Dimensional Multilayer Microstructure Emitter for Thermophotovoltaic Applications,” International Journal of Information and Communication, Vol. 5, No. 1, 2014, pp. 9–20. https://doi.org/10.14257/ijeic Google Scholar

  • [13] Rinnerbauer V., Ndao S., Yeng Y. X., Chan W. R., Senkevich J. J., Joannopoulos J. D., Soljacic M. and Celanovic I., “Recent Developments in High-Temperature Photonic Crystals for Energy Conversion,” Energy & Environmental Science, Vol. 5, No. 10, 2012, pp. 8815–8823. https://doi.org/10.1039/c2ee22731b Google Scholar

  • [14] Lin S. Y., Moreno J. and Fleming J. G., “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Applied Physics Letters, Vol. 83, No. 2, 2003, pp. 380–382. https://doi.org/10.1063/1.1592614 CrossrefGoogle Scholar

  • [15] Lee J., Cheon S., Hong S. and Nam Y., “A Radioisotope Thermophotovoltaic Converter with Nanophotonic Emitters and Filters,” International Journal of Heat and Mass Transfer, Vol. 108, May 2017, pp. 1115–1125. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.049 Google Scholar

  • [16] Rinnerbauer V., Ndao S., Yeng Y., Senkevich J., Jensen K. and Joannopoulos J., “Large-Area Fabrication of High Aspect Ratio Tantalum Photonic Crystals for High-Temperature Selective Emitters,” Journal of Vacuum Science & Technology B, Vol. 31, No. 1, 2013, Paper 011802. https://doi.org/10.1116/1.4771901 Google Scholar

  • [17] Wang X., Chan W., Stelmakh V., Čelanović I. and Fisher P., “Toward High Performance Radioisotope Thermophotovoltaic Systems Using Spectral Control,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 838, Dec. 2016, pp. 28–32. https://doi.org/10.1016/j.nima.2016.09.028 Google Scholar

  • [18] Anon., “GPHS-RTGs, in Support of the Cassini RTG Program. Final Technical Report,” U.S. Office of Scientific and Technical Information, Document No.  RR18, Valley Forge Operations, Philadelphia, PA, Aug. 1998. https://doi.org/10.2172/296824 Google Scholar

  • [19] Chan J., Wood J. G. and Schreiber J. G., “Development of Advanced Stirling Radioisotope Generator for Space Exploration,” NASA TM-2007-214806, May 2007. https://doi.org/10.1063/1.2437500 Google Scholar

  • [20] Schock A., Noravian H., Or C. and Kumar V., “Design and Analysis of Radioisotope Power System Based on Revised Multitube AMTEC Cell Design,” AIP Conference Proceedings, Vol. 387, No. 1, 1997, pp. 1411–1424. https://doi.org/10.1063/1.51956 Google Scholar

  • [21] Stelmakh V., Rinnerbauer V., Geil R. D., Aimone P. R., Senkevich J. J., Joannopoulos J. D., Soljačić M. and Čelanović I., “High-Temperature Tantalum Tungsten Alloy Photonic Crystals: Stability, Optical Properties, and Fabrication,” Applied Physics Letters, Vol. 103, No. 12, 2013, Paper 123903. https://doi.org/10.1063/1.4821586 Google Scholar

  • [22] Rinnerbauer V., Yeng Y. X., Chan W. R., Senkevich J. D., Joannopoulos J. D., Soljačić M. and Čelanović I., “High-Temperature Stability and Selective Thermal Emission of Polycrystalline Tantalum Photonic Crystals,” Optics Express, Vol. 21, No. 9, 2013, pp. 11482–11491. https://doi.org/10.1364/OE.21.011482 Google Scholar

  • [23] Qiu K., Hayden A. C., Mauk M. G. and Sulima O. V., “Generation of Electricity Using InGaAsSb and GaSb TPV Cells in Combustion-Driven Radiant Sources,” Solar Energy Materials and Solar Cells, Vol. 90, No. 1, 2006, pp. 68–81. https://doi.org/10.1016/j.solmat.2005.02.002 Google Scholar

  • [24] Wernsman B., Siergiej R. R., Link S. D., Mahorter R. G., Palmisiano M. N., Wehrer R. J., Schultz R. W., Schmuck G. P., Messham R. L., Murray S. and et al., “Greater than 20% Radiant Heat Conversion Efficiency of a Thermophotovoltaic Radiator/Module System Using Reflective Spectral Control,” IEEE Transactions on Electron Devices, Vol. 51, No. 3, 2004, pp. 512–515. https://doi.org/10.1109/TED.2003.823247 Google Scholar

  • [25] Mauk M. G., “Survey of Thermophotovoltaic (TPV) Devices,” Mid-Infrared Semiconductor Optoelectronics, Springer, London, 2007, pp. 673–738. https://doi.org/10.1007/1-84628-209-8_21 Google Scholar

  • [26] Chan W., Huang R., Wang C., Kassakian J., Joannopoulos J. and Čelanović I., “Modeling Low-Bandgap Thermophotovoltaic Diodes for High-Efficiency Portable Power Generators,” Solar Energy Materials and Solar Cells, Vol. 94, No. 3, 2010, pp. 509–514. https://doi.org/10.1016/j.solmat.2009.11.015 CrossrefGoogle Scholar

  • [27] Datas A. and Linares P. G., “Monolithic Interconnected Modules (MIM) for High Irradiance Photovoltaic Energy Conversion: A Comprehensive Review,” Renewable and Sustainable Energy Reviews, Vol. 73, June 2017, pp. 477–495. https://doi.org/10.1016/j.rser.2017.01.071 Google Scholar

  • [28] Zhang C., Liao Z., Tang L., Liu Z., Huo R., Wang Z. and Qiu K., “A Comparatively Experimental Study on the Temperature-Dependent Performance of Thermophotovoltaic Cells,” Applied Physics Letters, Vol. 114, No. 19, 2019, Paper 193902. https://doi.org/10.1063/1.5088791 Google Scholar

  • [29] Wilt D. M., Fatemi S., Hoffman R. W., Jenkins P. P., Scheiman D., Lowe R. and Landis G. A., “InGaAs PV Device Development for TPV Power Systems,” NASA TM-106718, July 1994. https://doi.org/10.1063/1.47061 Google Scholar

  • [30] Mason L. S., “A Power Conversion Concept for the Jupiter Icy Moons Orbiter,” Journal of Propulsion and Power, Vol. 20, No. 5, 2004, pp. 902–910. https://doi.org/10.2514/1.5805 LinkGoogle Scholar

  • [31] Ohlhorst C. W., Vaughn W. L., Ransone P. O. and Tsou H. T., “Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials,” NASA TM-4787, Nov. 1997. Google Scholar

  • [32] Juhasz A. Z. and Peterson G. P., “Review of Advanced Radiator Technologies for Spacecraft Power Systems and Space Thermal Control,” NASA TM 4555, June 1994. Google Scholar

  • [33] Zohuri B., “Application of Heat Pipe in Industry,” Heat Pipe Design and Technology, Springer, Albuquerque, NM, 2016, pp. 335–394. https://doi.org/10.1007/978-3-319-29841-2_4 Google Scholar

  • [34] Juhasz A. J., “High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators,” NASA TM 2008-215420, October 2008. https://doi.org/10.2514/6.2008-5784 Google Scholar

  • [35] Massardo A. F., Tagliafico L. A., Fossa M. and Agazzani A., “Solar Space Power System Optimization with Ultralight Radiator,” Journal of Propulsion and Power, Vol. 13, No. 4, 1997, pp. 560–564. https://doi.org/10.2514/2.5203 LinkGoogle Scholar

  • [36] Modest M. F., “Radiative Exchange Between Gray, Diffuse Surfaces,” Radiative Heat Transfer, Academic Press, Oxford, U.K., 2013, pp. 160–196. https://doi.org/10.1016/b978-0-12-386944-9.50005-4 Google Scholar

  • [37] Liu V. and Fan S., “S4: A Free Electromagnetic Solver for Layered Periodic Structures,” Computer Physics Communications, Vol. 183, No. 10, 2012, pp. 2233–2244. https://doi.org/10.1016/j.cpc.2012.04.026 Google Scholar

  • [38] Chou J. B., Yeng Y. X., Lenert A., Rinnerbauer V., Celanovic I., Soljačić M., Wang E. N. and Kim S. G., “Design of Wide-Angle Selective Absorbers/Emitters with Dielectric Filled Metallic Photonic Crystals for Energy Applications,” Optics Express, Vol. 22, No. S1, 2014, pp. A144–154. https://doi.org/10.1364/OE.22.00A144 Google Scholar

  • [39] Palik E. D., Handbook of Optical Constants of Solids, Vol. 2, Academic Press, London, 1998, pp. 417–419. https://doi.org/10.1016/c2009-0-20920-2 Google Scholar

  • [40] Kuzmenko A. B., “Kramers-Kronig Constrained Variational Analysis of Optical Data,” Review of Scientific Instruments, Vol. 76, No. 8, 2005, Paper 083108. https://doi.org/10.1063/1.1979470 Google Scholar

  • [41] Wang X., Chan W., Stelmakh V. and Fisher P., “Radioisotope Thermophotovoltaic Generator Design and Performance Estimates for Terrestrial Applications,” Proceedings of the 25th International Conference on Nuclear Engineering, Vol. 3, ASME, New York, 2017, p. V003T13A008. https://doi.org/10.1115/icone25-66607 Google Scholar

  • [42] Chambers R. L. and Somers E. V., “Radiation Fin Efficiency for One-Dimensional Heat Flow in a Circular Fin,” Journal of Heat Transfer, Vol. 81, No. 4, 1959, pp. 327–329. https://doi.org/10.1115/1.4008219 Google Scholar

  • [43] Keller H. H. and Holdredge E. S., “Radiation Heat Transfer for Annular Fins of Trapezoidal Profile,” Journal of Heat Transfer, Vol. 92, No. 1, 1970, pp. 113–116. https://doi.org/10.1115/1.3449597 Google Scholar

  • [44] Hemadri V. A., Gupta A. and Khandekar S., “Thermal Radiators with Embedded Pulsating Heat Pipes: Infra-Red Thermography and Simulations,” Applied Thermal Engineering, Vol. 31, Nos. 6–7, 2011, pp. 1332–1346. https://doi.org/10.1016/j.applthermaleng.2011.01.004 Google Scholar

  • [45] Mattick A. T. and Hertzberg A., “Liquid Droplet Radiators for Heat Rejection in Space,” Journal of Energy, Vol. 5, No. 6, 1981, pp. 387–393. https://doi.org/10.2514/3.62557 LinkGoogle Scholar

  • [46] Woerner D., “A Progress Report on the eMMRTG,” Journal of Electronic Materials, Vol. 45, No. 3, 2016, pp. 1278–1283. https://doi.org/10.1007/s11664-015-3998-8 CrossrefGoogle Scholar

  • [47] El-Genk M. S. and Saber H. H., “Thermal and Performance Analyses of Efficient Radioisotope Power Systems,” Energy Conversion and Management, Vol. 47, Nos. 15–16, 2006, pp. 2290–2307. https://doi.org/10.1016/j.enconman.2005.11.022 Google Scholar

  • [48] Mason L. S., “Realistic Specific Power Expectations for Advanced Radioisotope Power Systems,” Journal of Propulsion and Power, Vol. 23, No. 5, 2007, pp. 1075–1079. https://doi.org/10.2514/1.26444 LinkGoogle Scholar