Skip to main content
Skip to article control options
No AccessFull-Length Papers

Nitrous Oxide Decomposition Using Inductively Heated Heat Exchangers

Published Online:https://doi.org/10.2514/1.B37793

Three different heat exchangers (copper metal foam, copper disks, and stainless-steel disks) with lower effective surface areas than nominal catalysts used in thrusters were tested for nitrous oxide decomposition. These heat exchangers were preheated to thermal decomposition temperatures using an inductive heating system and placed in a vacuum bell jar to mitigate heat loss to the environment. Testing with copper metal foam resulted in complete degradation of the heat exchanger due to oxidation from nitrous oxide decomposition. A set of copper disks, uniquely designed to maximize tortuosity of the flow, was implemented in an attempt to address the oxidation issues. While the preliminary test did confirm steady-state decomposition of nitrous oxide within the heat exchanger, further tests resulted in temperatures exceeding the melting point of copper within the disks. The last heat exchanger was a set of stainless-steel disks of the same design. Repeated tests all successfully achieved steady-state decomposition of nitrous oxide within a 2 min interval.

References

  • [1] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, Wiley, Hoboken, New Jersey, Nov. 2016, Chap. 7. Google Scholar

  • [2] Russi M., “A Survey of Monopropellant Hydrazine Thruster Technology,” 9th Propulsion Conference, AIAA, Reston, VA, Feb. 2013, pp. 1–0. Google Scholar

  • [3] Brown C., Spacecraft Propulsion, AIAA Education Series, AIAA, Reston, VA, 1996. Google Scholar

  • [4] Marshall W. M. and Deans C. M., “Recommended Figures of Merit for Green Monopropellants,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2013-3722, 2013. https://doi.org/10.2514/6.2013-3722 Google Scholar

  • [5] Zakirov V., Sweeting M., Goeman V. and Lawrence T., “Surrey Research on Nitrous Oxide Catalytic Decomposition for Space Applications,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Digital Commons, Utah, 2000, pp. 1–9. Google Scholar

  • [6] Zakirov V., Sweeting M., Lawrence T. and Sellers J., “Nitrous Oxide as a Rocket Propellant,” Acta Astronautica, Vol. 48, No. 5, 2001, pp. 353–362. https://doi.org/10.1016/S0094-5765(01)00047-9 CrossrefGoogle Scholar

  • [7] Kakami A., Egawa T., Yamamoto N. and Tachibana T., “Plasma-Assisted Combustion ofN2O/Ethanol Propellant for Space Propulsion,” Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2010-6806, Nov. 2010. https://doi.org/10.2514/6.2010-6806 Google Scholar

  • [8] Hennemann L., Andrade J. C. d. and Costa F. D. S., “Experimental Investigation of a Monopropellant Thruster Using Nitrous Oxide,” Journal of Aerospace Technology and Management, Vol. 6, No. 4, 2014, pp. 363–372. https://doi.org/10.5028/jatm.v6i4.382 CrossrefGoogle Scholar

  • [9] Sackheim R. L. and Masse R. K., “Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine,” Journal of Propulsion and Power, Vol. 30, No. 2, March 2014, pp. 265–276. https://doi.org/10.2514/1.B35086 LinkGoogle Scholar

  • [10] Wallbank J., Sermon P., Baker A., Courtney L. and Sambrook R., “Nitrous Oxide as a Green Monopropellant for Small Satellites,” Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557), ESA Publications Division, June 2004, pp. 125–130. Google Scholar

  • [11] Karabeyoglu A., Dyer J., Stevens J. and Cantwell B., “Modeling of N2O Decomposition Events,” Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2008-4933, June 2012. https://doi.org/10.2514/6.2008-4933 Google Scholar

  • [12] Beyer H., Emmerich J., Chatziapostolou K. and Koehler K., “Decomposition of Nitrous Oxide by Rhodium Catalysts: Effect of Rhodium Particle Size and Metal Oxide Support,” Applied Catalysis A: General, Vol. 391, Nos. 1–2, 2011, pp. 411–416. https://doi.org/10.1016/j.apcata.2010.03.060 Google Scholar

  • [13] Sui C., Yuan F., Zhang Z., Zhang C., Niu X. and Zhu Y., “Effect of Ru Species on N2O Decomposition over Ru/Al2O3 Catalysts,” Catalysts, Vol. 6, No. 11, Nov. 2016, pp. 1–18. https://doi.org/10.3390/catal6110173 Google Scholar

  • [14] Oi J., Obuchi A., Bamwenda G. R., Ogata A., Yagita H., Kushiyama S. and Mizuno K., “Decomposition of Nitrous Oxide over Supported Rhodium Catalysts and Dependency on Feed Gas Composition,” Applied Catalysis B: Environmental, Vol. 12, No. 4, July 1997, pp. 277–286. https://doi.org/10.1016/S0926-3373(96)00079-3 Google Scholar

  • [15] Kim J. and Kim T., “Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System,” Journal of Nanoscience and Nanotechnology, Vol. 18, No. 2, Feb. 2018, pp. 1263–1265. https://doi.org/10.1166/jnn.2018.14916 Google Scholar

  • [16] Jang D., Kang S. and Kwon S., “Preheating Characteristics of H2O2 Monopropellant Thruster Using Manganese Oxide Catalyst,” Aerospace Science and Technology, Vol. 41, Feb. 2015, pp. 24–27. https://doi.org/10.1016/j.ast.2014.12.010 CrossrefGoogle Scholar

  • [17] Soares Neto T., Gobbo-Ferreira J., Cobo A. and Cruz G., “IrRu/Al2O3 Catalysts used in Satellite Propulsion,” Brazilian Journal of Chemical Engineering, Vol. 20, No. 3, 2003, pp. 273–282. https://doi.org/10.1590/S0104-66322003000300007 Google Scholar

  • [18] Heo S., Jo S., Yun Y. and Kwon S., “Effect of Dual-Catalytic Bed Using Two Different Catalyst Sizes for Hydrogen Peroxide Thruster,” Aerospace Science and Technology, Vol. 78, July 2018, pp. 26–32. https://doi.org/10.1016/j.ast.2018.03.032 CrossrefGoogle Scholar

  • [19] Sinfelt J. H., “Structure of Metal Catalysts,” Reviews of Modern Physics, Vol. 51, No. 3, July 1979, pp. 569–589. https://doi.org/10.1103/RevModPhys.51.569 Google Scholar

  • [20] Zakirov V., Sweeting M. and Lawrence T., “An Update on Surrey Nitrous Oxide Catalytic Decomposition Research,” Proceedings of the 15th Annual AIAA/USU Conference on Small Satellites, Digital Commons, Utah, 2001, pp. 1–9, SSC01-XI–2. Google Scholar

  • [21] Saripalli P. S. and Sedwick R. J., “One-Dimensional Numerical Model of Nitrous Oxide Decomposition Using a Metal Foam,” Journal of Propulsion and Power, Vol. 35, No. 5, 2019. https://doi.org/10.2514/1.B37324 Google Scholar

  • [22] Martinez-Sanchez M. and Pollard J. E., “Spacecraft Electric Propulsion: An Overview,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 688–699. https://doi.org/10.2514/2.5331 LinkGoogle Scholar

  • [23] Scharlemann C., Schiebl M., Marhold K., Tajmar M., Miotti P., Kappenstein C., Batonneau Y., Brahmi R. and Hunter C., “Development and Test of a Miniature Hydrogen Peroxide Monopropellant Thruster,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2006-4550, June 2012. https://doi.org/10.2514/6.2006-4550 Google Scholar

  • [24] Amri R., Gibbon D. and Rezoug T., “The Design, Development and Test of One Newton Hydrogen Peroxide Monopropellant Thruster,” Aerospace Science and Technology, Vol. 25, No. 1, March 2013, pp. 266–272. https://doi.org/10.1016/j.ast.2012.02.002 Google Scholar

  • [25] Zinn S., Semiatin S., Institute E. and Laboratories B., Elements of Induction Heating: Design, Control, and Applications, ASM International, Metals Park, Ohio, 1988, Chap. 2. Google Scholar

  • [26] Rudnev V., Loveless D., Cook R. and Black M., Handbook of Induction Heating, Manufacturing Engineering and Materials Processing, CRC Press, Boca Raton, FL, 2002, Chap. 3. CrossrefGoogle Scholar

  • [27] Zhu Y. F., Mimura K. and Isshiki M., “Oxidation Mechanism of Copper at 623–1073 K,” Materials Transactions, Vol. 43, No. 9, Sept. 2002, pp. 2173–2176. https://doi.org/10.2320/matertrans.43.2173 Google Scholar

  • [28] Vesel A., Mozetic M., Drenik A., Hauptman N. and Balat-Pichelin M., “High Temperature Oxidation of Stainless Steel AISI316L in air plasma,” Applied Surface Science, Vol. 255, No. 5, Dec. 2008, pp. 1759–1765. https://doi.org/10.1016/j.apsusc.2008.06.017 Google Scholar

  • [29] Davies J., Conduction and Induction Heating, Energy Engineering Series, P. Peregrinus, London, England, U.K., 1990, Chap. 10. Google Scholar

  • [30] Tsay M., Lafko D., Zwahlen J. and Costa W., “Development of Busek 0.5N Green Monopropellant Thruster,” Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Digital Commons, Utah, 2013, pp. 1–6, SSC13-VII–7. Google Scholar

  • [31] Nguyen H., Köhler J. and Stenmark L., “The Merits of Cold Gas Micropropulsion in State-of-the-Art Space Missions,” 2nd World Space Congress, IAC-02-S.2.07, Houston, Texas, 2002, pp. 1–6. Google Scholar

  • [32] Landsat Data Continuation Mission Press Kit,” NASA, Feb. 2013, https://www.nasa.gov/pdf/723395main_LDCMpresskit2013-final.pdf. Google Scholar

  • [33] Energy Storage Technologies for Future Planetary Science Missions,” NASA JPL D-101146, Dec. 2017, https://solarsystem.nasa.gov/system/downloadable_items/716_Energy_Storage_Tech_Report_FINAL.PDF. Google Scholar