Skip to main content
Skip to article control options
No AccessFull-Length Papers

Modern Competing Flames Model for Composite Ammonium Perchlorate/Hydroxyl-Terminated Polybutadiene Propellant Combustion

Published Online:https://doi.org/10.2514/1.B38925

The competing flames model, also termed the Beckstead–Derr–Price model, for steady-state heterogeneous propellant combustion has been widely used but has not been sufficiently updated in decades or compared to modern propellant combustion databases. In the current study, historical competing flames modeling approaches were thoroughly documented; and an improved framework was outlined and updated to include several improvements, such as variable flame temperatures, specific heat capacities, and latent heat terms. Model parameters were initially taken from previous literature, but the fuel and diffusion flame parameters were optimized based on a compiled database of unimodal propellant burning rates from the literature spanning a wide range of ammonium perchlorate (AP) particle sizes (5500  μm), AP mass concentrations (70–87.5%), and combustion pressures (0.7–20.7 MPa). The improved model was compared to AP monopropellant, unimodal, and multimodal propellant burning rate databases from the literature. General dependencies of the burning rate-to-oxidizer concentration and size were accurately captured. The predictive capability of the improved model for AP monopropellant burning rates and unimodal propellant formulations was excellent, where the only significant discrepancies were noted for very fine AP particles (<10  μm). Model predictions for multimodal formulations were moderate and could be improved by alternative pseudopropellant apportionment and statistical accounting schemes.

References

  • [1] Beckstead M. W., Derr R. L. and Price C. F., “A Model of Composite Solid-Propellant Combustion Based on Multiple Flames,” AIAA Journal, Vol. 8, No. 12, 1970, pp. 2200–2207. https://doi.org/10.2514/3.6087 LinkGoogle Scholar

  • [2] Beckstead M. W., Derr R. L. and Price C. F., “The Combustion of Solid Monopropellants and Composite Propellants,” Proceedings of the Combustion Institute, Vol. 13, No. 1, 1971, pp. 1047–1056. https://doi.org/10.1016/S0082-0784(71)80103-0 CrossrefGoogle Scholar

  • [3] Thomas J. C., Morrow G. R., Dillier C. A. M. and Petersen E. L., “Comprehensive Study of AP Particle Size and Loading on the Burning Rates of Composite AP/HTPB Propellants,” 2018 Joint Propulsion Conference, AIAA Paper 2018-4874, 2018. https://doi.org/10.2514/6.2018-4874 LinkGoogle Scholar

  • [4] Thomas J. C., Morrow G. R., Dillier C. A. M. and Petersen E. L., “Comprehensive Study of Ammonium Perchlorate Particle Size/Concentration Effects on Propellant Combustion,” Journal of Propulsion and Power, Vol. 36, No. 1, 2019, pp. 95–100. https://doi.org/10.2514/1.B37485 LinkGoogle Scholar

  • [5] Cohen N. S., “Review of Composite Propellant Burn Rate Modeling,” AIAA Journal, Vol. 18, No. 3, 1980, pp. 277–293. https://doi.org/10.2514/3.50761 LinkGoogle Scholar

  • [6] Cohen N. S. and Strand L. D., “An Improved Model for the Combustion of AP Composite Propellants,” AIAA Journal, Vol. 20, No. 12, 1982, pp. 1739–1746. https://doi.org/10.2514/3.8013 LinkGoogle Scholar

  • [7] Beckstead M. W., “A Model for Solid Propellant Combustion,” Symposium (International) on Combustion, Vol. 18, No. 1, 1981, pp. 175–185. https://doi.org/10.1016/S0082-0784(81)80022-7 CrossrefGoogle Scholar

  • [8] Price C. F., Boggs T. L. and Derr R. L., “The Steady-State Combustion Behavior of Ammonium Perchlorate and Cyclotetramethylenetetranitramine,” 17th Aerospace Sciences Meeting, AIAA Paper 1979-0164, 1979. https://doi.org/10.2514/6.1979-164 LinkGoogle Scholar

  • [9] Shannon L. H. and Petersen E. E., “Deflagration Characteristics of Ammonium Perchlorate Strands,” AIAA Journal, Vol. 2, No. 1, 1964, pp. 168–169. https://doi.org/10.2514/3.2261 LinkGoogle Scholar

  • [10] Burke S. P. and Schumann T. E. W., “Diffusion Flames,” Industrial and Engineering Chemistry, Vol. 20, No. 10, 1928, pp. 998. https://doi.org/10.1021/ie50226a005 CrossrefGoogle Scholar

  • [11] Williams F. A., Combustion Theory, Addison-Wesley, Reading, MA, 1965, pp. 37–45. Google Scholar

  • [12] Shusser M., Culick F. E. C. and Cohen N. S., “Combustion Response of Ammonium Perchlorate,” AIAA Journal, Vol. 40, No. 4, pp. 722–730, 2002. https://doi.org/10.2514/2.1704 LinkGoogle Scholar

  • [13] Glick R. L., “On Statistical Analysis of Composite Solid Propellant Combustion,” AIAA Journal, Vol. 12, No. 3, 1974, pp. 384–385. https://doi.org/10.2514/3.49241 LinkGoogle Scholar

  • [14] Glick R. L., “Steady-State Combustion of Non-Metallized Composite Solid Propellant,” U.S. Air Force Office of Scientific Research Rept. U-75-27, Arlington, VA, 1975. Google Scholar

  • [15] Price C., Boggs T. and Derr R., “Modeling of Solid Monopropellant Deflagration,” 16th AIAA Aerospace Sciences Meeting, AIAA Paper 1978-0219, 1978. https://doi.org/10.2514/6.1978-219 LinkGoogle Scholar

  • [16] Price C. F., Boggs T. L. and Derr R. L., “The Steady-State Combustion Behavior of Ammonium Perchlorate and HMX,” 17th AIAA Aerospace Sciences Meeting, AIAA Paper 1979-0164, 1979. https://doi.org/10.2514/6.1979-164 LinkGoogle Scholar

  • [17] Cohen N. S. and Strand L. D., “An Improved Model for the Combustion of AP Composite Propellants,” 17th AIAA Joint Propulsion Conference, AIAA Paper 1981-1553, 1981. https://doi.org/10.2514/6.1981-1553 LinkGoogle Scholar

  • [18] Condon J. A. and Osborn J. R., “The Effect of Oxidizer Particle Size Distribution on the Steady and Nonsteady Combustion of Composite Propellants,” U.S. Air Force Research Lab. TR-78-17, Edwards AFB, CA, 1978. CrossrefGoogle Scholar

  • [19] Rasmussen B. and Frederick R. A., “Nonlinear Heterogeneous Model of Composite Solid-Propellant Combustion,” Journal of Propulsion and Power, Vol. 18, No. 5, 2002, pp. 1086–1092. https://doi.org/10.2514/2.6038 LinkGoogle Scholar

  • [20] Massa L., Jackson T. L. and Buckmaster J., “New Kinetics for a Model of Heterogenous Propellant Combustion,” Journal of Propulsion and Power, Vol. 21, No. 5, 2005, pp. 914–924. https://doi.org/10.2514/1.2433 LinkGoogle Scholar

  • [21] Frazier C. A., “Modeling Solid Propellant Strand Burner Experiments with Catalytic Nanoparticle Additives,” Ph.D. Thesis, Texas A&M Univ., College Station, TX, 2011. Google Scholar

  • [22] Frazier C., Demko A. R. and Petersen E. L., “Modeling Composite Solid Propellant with Catalytic Additives,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0820, 2013. https://doi.org/10.2514/6.2013-820 LinkGoogle Scholar

  • [23] Gross M. L., Hedman T. D., Son S. F., Jackson T. L. and Beckstead M. W., “Coupling Micro and Meso-Scale Combustion Models of AP/HTPB Propellants,” Combustion and Flame, Vol. 160, No. 5, 2013, pp. 982–992. https://doi.org/10.1016/j.combustflame.2013.01.016 CrossrefGoogle Scholar

  • [24] Kosiba G. D., “Multidimensional Modeling of Composite Solid Propellant Combustion,” Ph.D. Thesis, Rensselaer Polytechnic Inst., Troy, NY, 2017. Google Scholar

  • [25] Kosiba G. D., Wixom R. R. and Oehlschlaegar M. A., “High-Fidelity Microstructural Characterization and Performance Modeling of Aluminized Composite Propellant,” Propellants, Explosives, and Pyrotechnics, Vol. 42, No. 12, 2017, pp. 1387–1395. https://doi.org/10.1002/prep.201700124 CrossrefGoogle Scholar

  • [26] Price C. F. and Boggs T. L., U.S. Naval Weapons Center Letter Memorandum 388-299-79, China Lake, CA, 1979. Google Scholar

  • [27] King M. K., “Experimental and Theoretical Study of the Effects of Pressure and Crossflow Velocity on Composite Propellant Burning Rate,” Proceedings of the Combustion Institute, Vol. 18, No. 1, 1981, pp. 207–216. https://doi.org/10.1016/S0082-0784(81)80025-2 Google Scholar

  • [28] Foster R. L., Condon J. A. and Miller R. R., “Low Exponent Technology,” U.S. Air Force Rocket Propulsion Lab. TR-81-95, Edwards AFB, CA, 1982. Google Scholar

  • [29] Friedman R., Nugent R. G., Rumbel K. E. and Scurlock A. C., “Deflagration of Ammonium Perchlorate,” Symposium (International) on Combustion, Vol. 6, No. 1, 1957, pp. 612–618. https://doi.org/10.1016/S0082-0784(57)80084-8 Google Scholar

  • [30] Levy J. B. and Friedman R., “Further Studies of Pure Ammonium Perchlorate Deflagration,” Symposium (International) on Combustion, Vol. 8, No. 1, 1962, pp. 663–672. https://doi.org/10.1016/S0082-0784(06)80558-8 Google Scholar

  • [31] Irwin O. R., Salzman P. K. and Anderson W. H., “Deflagration Characteristics of Ammonium Perchlorate at High Pressures,” Symposium (International) on Combustion, Vol. 9, No. 1, 1963, pp. 358–365. https://doi.org/10.1016/S0082-0784(63)80044-2 CrossrefGoogle Scholar

  • [32] Glazkova A. P., “Effect of Pressure on the Combustion Rate of Ammonium Perchlorate,” Zhurnal Prikladnoi Mekhanika i Teknicheskoi Fiziki, Vol. 5, No. 1, 1963, pp. 193–202 (Translated DDC AD-614-773, American Report Number). Google Scholar

  • [33] Bobolev V. K., Glazkova A. P., Zenin A. A. and Leypunskii O. I., “A Study of the Temperature Distribution in the Combustion of Ammonium Perchlorate,” Zhurnal Prikladnoi Mekhanika i Teknicheskoi Fiziki, Vol. 3, No. 1, 1964, pp. 153–158. Google Scholar

  • [34] Hightower J. D. and Price E. W., “Combustion of Ammonium Perchlorate,” Symposium (International) on Combustion, Vol. 11, No. 1, 1967, pp. 463–472. https://doi.org/10.1016/S0082-0784(67)80171-1 CrossrefGoogle Scholar

  • [35] Hackman E. E. and Beachell H. C., “Combustion Characteristics of Crystalline Oxidizers,” AIAA Journal, Vol. 6, No. 3, 1968, pp. 561–564. https://doi.org/10.2514/3.4544 LinkGoogle Scholar

  • [36] Boggs T. L., “Deflagration Rate, Surface Structure, and Subsurface Profile of Self-Deflagrating Single Crystals of Ammonium Perchlorate,” AIAA Journal, Vol. 8, No. 5, 1970, pp. 867–873. https://doi.org/10.2514/3.5780 LinkGoogle Scholar

  • [37] Boggs T. L., Zurn D. E. and Netzer D. W., “Ammonium Perchlorate Combustion: Effects of Sample Preparation; Ingredient Type, and Pressure, Temperature and Acceleration Environments,” Combustion and Flame, Vol. 7, No. 4, 1973, pp. 177–183. https://doi.org/10.1080/00102207308952356 Google Scholar

  • [38] Atwood A. I., Boggs T. L., Curran P. O., Parr T. P., Hanson-Parr D. M., Price C. F. and Wiknich J., “Burning Rate of Solid Propellant Ingredients, Part 1: Pressure and Initial Temperature Effects,” Journal of Propulsion and Power, Vol. 15, No. 6, 1999, pp. 740–747. https://doi.org/10.2514/2.5522 LinkGoogle Scholar

  • [39] Petersen E. D., Rodriguez F. A., Dillier C. A. M., Thomas J. C. and Petersen E. L., “Combustion Behavior of Ammonium Perchlorate at High Pressures,” 2019 AIAA Joint Propulsion Conference, AIAA Paper 2019-4366, 2019. https://doi.org/10.2514/6.2019-4366 LinkGoogle Scholar

  • [40] Rodriguez F. A., Thomas J. C., Sammet T. E., Teitge D. S. and Petersen E. L., “Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Micro- and Nano-Catalytic Additives,” Journal of Propulsion and Power, Vol. 38, No. 5, 2022, pp. 822–832. LinkGoogle Scholar

  • [41] Bellec R., Duterque J. and Lengelle G., “Modeling of Aluminized Solid Propellants,” ONERA TR 37/7128 EN, Palaiseau, France, 1996. Google Scholar

  • [42] Renie J. P., Condon J. A. and Osborn J. R., “Oxidizer Size Distribution Effects on Propellant Combustion,” AIAA Journal, Vol. 17, No. 8, 1979, pp. 877–883. https://doi.org/10.2514/3.61240 LinkGoogle Scholar

  • [43] Gross M. L. and Hedman T. D., “Towards the Simplified Composite Propellant Burning Rate Model Based on Detailed Chemistry Calculations,” International Journal of Energetic Materials, Vol. 14, No. 5, 2015, pp. 399–420. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2015011501 Google Scholar

  • [44] Miller R. R., Donuhue M. T. and Martin J. R., “Control of Solids Distribution in HTPB Propellants,” U.S. Air Force Rocket Propulsion Lab. TR-78-14, Edwards AFB, CA, 1978. Google Scholar