Skip to main content
Skip to article control options
No AccessFull-Length Papers

Facility Effects on the Ion Characteristics of a 12.5-Kilowatt Hall Thruster

Published Online:https://doi.org/10.2514/1.B39034

During a laser-induced fluorescence test of a 12.5 kW magnetically shielded Hall thruster, ion characteristics in the discharge channel and near the poles were measured as the background pressure and electrical configuration were varied. The acceleration zone of the thruster moved upstream by 2 and 10% of the channel length when the background pressure was raised to 1.8 times and seven times the lowest achievable pressure, respectively. Examination of the characteristics of the ions near the pole covers suggested that as the background pressure decreased, the pole covers might be experiencing more erosion. When operating at a discharge voltage of 300 V, the acceleration zone was observed to be at the same location for all electrical configurations. When operating at a discharge voltage of 600 V, the acceleration zone was observed to move 3% of the channel length upstream when the thruster body was floated instead of tied to the cathode or grounded to the facility. Characteristics of the ions bombarding the pole covers did not vary across the tested electrical configurations. This observation combined with thruster body voltage measurements suggested that varying the electrical configuration only affected the thruster body sheath voltage and did not affect the plasma potential beyond the sheath.

References

  • [1] Mikellides I. G., Katz I., Hofer R. R., Goebel D. M., de Grys K. and Mathers A. J., “Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator,” Physics of Plasmas, Vol. 18, No. 3, March 2011, Paper 033501. https://doi.org/10.1063/1.3551583 CrossrefGoogle Scholar

  • [2] Mikellides I. G. and Katz I., “Numerical Simulations of Hall-Effect Plasma Accelerators on a Magnetic-Field-Aligned Mesh,” Physical Review E, Vol. 86, No. 4, Oct. 2012, Paper 046703. https://doi.org/10.1103/PhysRevE.86.046703 Google Scholar

  • [3] Mikellides I. G., Katz I., Hofer R. R. and Goebel D. M., “Magnetic Shielding of Walls from the Unmagnetized Ion Beam in a Hall Thruster,” Applied Physics Letters, Vol. 102, No. 2, Jan. 2013, Paper 023509. https://doi.org/10.1063/1.4776192 CrossrefGoogle Scholar

  • [4] Mikellides I. G., Katz I., Hofer R. R. and Goebel D. M., “Magnetic Shielding of a Laboratory Hall Thruster. I. Theory and Validation,” Journal of Applied Physics, Vol. 115, No. 4, Jan. 2014, Paper 043303. https://doi.org/10.1063/1.4862313 CrossrefGoogle Scholar

  • [5] Hofer R. R., Goebel D. M., Mikellides I. G. and Katz I., “Magnetic Shielding of a Laboratory Hall Thruster. II. Experiments,” Journal of Applied Physics, Vol. 115, No. 4, Jan. 2014, Paper 043304. https://doi.org/10.1063/1.4862314 CrossrefGoogle Scholar

  • [6] Mikellides I. G., Hofer R. R., Katz I. and Goebel D. M., “Magnetic Shielding of Hall Thrusters at High Discharge Voltages,” Journal of Applied Physics, Vol. 116, No. 5, Aug. 2014, Paper 053302. https://doi.org/10.1063/1.4892160 CrossrefGoogle Scholar

  • [7] Mazouffre S., Tsikata S. and Vaudolon J., “Development and Experimental Characterization of a Wall-Less Hall Thruster,” Journal of Applied Physics, Vol. 116, No. 24, Dec. 2014, Paper 243302. https://doi.org/10.1063/1.4904965 CrossrefGoogle Scholar

  • [8] Vaudolon J., Mazouffre S., Hénaux C., Harribey D. and Rossi A., “Optimization of a Wall-Less Hall Thruster,” Applied Physics Letters, Vol. 107, No. 17, Oct. 2015, Paper 174103. https://doi.org/10.1063/1.4932196 Google Scholar

  • [9] Mazouffre S., “Electric Propulsion for Satellites and Spacecraft: Established Technologies and Novel Approaches,” Plasma Sources Science and Technology, Vol. 25, No. 3, April 2016, Paper 033002. https://doi.org/10.1088/0963-0252/25/3/033002 CrossrefGoogle Scholar

  • [10] Grimaud L. and Mazouffre S., “Conducting Wall Hall Thrusters in Magnetic Shielding and Standard Configurations,” Journal of Applied Physics, Vol. 122, No. 3, July 2017, Paper 033305. https://doi.org/10.1063/1.4995285 Google Scholar

  • [11] Garrigues L., Santhosh S., Grimaud L. and Mazouffre S., “Operation of a Low-Power Hall Thruster: Comparison Between Magnetically Unshielded and Shielded Configuration,” Plasma Sources Science and Technology, Vol. 28, No. 3, March 2019, Paper 034003. https://doi.org/10.1088/1361-6595/ab080d Google Scholar

  • [12] Conversano R. W., Lobbia R. B., Kerber T. V., Tilley K. C., Goebel D. M. and Reilly S. W., “Performance Characterization of a Low-Power Magnetically Shielded Hall Thruster with an Internally-Mounted Hollow Cathode,” Plasma Sources Science and Technology, Vol. 28, No. 10, Oct. 2019, Paper 105011. https://doi.org/10.1088/1361-6595/ab47de Google Scholar

  • [13] Duan X., Cheng M., Yang X., Guo N., Li X., Wang M. and Guo D., “Investigation on Ion Behavior in Magnetically Shielded and Unshielded Hall Thrusters by Laser-Induced Fluorescence,” Journal of Applied Physics, Vol. 127, March 2020, Paper 093301. https://doi.org/10.1063/1.5140514 Google Scholar

  • [14] Lopez Ortega A. and Mikellides I. G., “The Importance of the Cathode Plume and Its Interactions with the Ion Beam in Numerical Simulations of Hall Thrusters,” Physics of Plasmas, Vol. 23, No. 4, April 2016, Paper 043515. https://doi.org/10.1063/1.4947554 Google Scholar

  • [15] Grimaud L. and Mazouffre S., “Ion Behavior in Low-Power Magnetically Shielded and Unshielded Hall Thrusters,” Plasma Sources Science and Technology, Vol. 26, No. 5, April 2017, Paper 055020. https://doi.org/10.1088/1361-6595/aa660d Google Scholar

  • [16] Lopez Ortega A., Mikellides I. G., Sekerak M. J. and Jorns B. A., “Plasma Simulations in 2-D (R-Z) Geometry for the Assessment of Pole Erosion in a Magnetically Shielded Hall Thruster,” Journal of Applied Physics, Vol. 125, No. 3, Jan. 2019, Paper 033302. https://doi.org/10.1063/1.5077097 Google Scholar

  • [17] Mikellides I. G. and Lopez Ortega A., “Growth of the Modified Two-Stream Instability in the Plume of a Magnetically Shielded Hall Thruster,” Physics of Plasmas, Vol. 27, No. 10, Oct. 2020, Paper 100701. https://doi.org/10.1063/5.0020075 Google Scholar

  • [18] Huang W. and Kamhawi H., “Counterstreaming Ions at the Inner Pole of a Magnetically Shielded Hall Thruster,” Journal of Applied Physics, Vol. 129, Jan. 2021, Paper 043305. https://doi.org/10.1063/5.0029428 Google Scholar

  • [19] Mikellides I. G. and Lopez Ortega A., “Growth of the Lower Hybrid Drift Instability in the Plume of a Magnetically Shielded Hall Thruster,” Journal of Applied Physics, Vol. 129, No. 19, May 2021, Paper 193301. https://doi.org/10.1063/5.0048706 CrossrefGoogle Scholar

  • [20] Huang W., Frieman J. D., Kamhawi H., Peterson P. Y. and Hofer R. R., “Ion Velocity Characterization of the 12.5-kW Advanced Electric Propulsion System Engineering Hall Thruster,” 2021 AIAA Propulsion and Energy Forum, AIAA Paper 2021-3432, Aug. 2021. https://doi.org/10.2514/6.2021-3432 LinkGoogle Scholar

  • [21] Hall S. J., Gray T. G., Yim J. T., Choi M., Sarver-Verhey T. R. and Kamhawi H., “The Effect of Facility Background Pressure on Hollow Cathode Operation,” Journal of Applied Physics, Vol. 130, No. 11, Sept. 2021, Paper 113302. https://doi.org/10.1063/5.0061045 Google Scholar

  • [22] Frieman J. D., Gilland J. H., Kamhawi H., Mackey J. A., Williams G. J., Hofer R. R. and Peterson P. Y., “Wear Trends of the 12.5 kW HERMeS Hall Thruster,” Journal of Applied Physics, Vol. 130, No. 14, Oct. 2021, Paper 143303. https://doi.org/10.1063/5.0062579 Google Scholar

  • [23] Polk J. E., Lobbia R. B., Barriault A. and Vela P. P. G., “Use of an Accelerated Testing Method to Characterize Inner Front Pole Cover Erosion in a High Power Hall Thruster,” Journal of Applied Physics, Vol. 130, No. 18, Nov. 2021, Paper 183302. https://doi.org/10.1063/5.0067452 Google Scholar

  • [24] Byers D. and Dankanich J. W., “A Review of Facility Effects on Hall Effect Thrusters,” 31st International Electric Propulsion Conference, AIAA Paper 2009-0076, Sept. 2009. Google Scholar

  • [25] Sankovic J. M., Hamley J. A. and Haag T. W., “Performance Evaluation of the Russian SPT-100 Thruster at NASA LeRC,” 23rd International Electric Propulsion Conference, AIAA Paper 1993-0094, Sept. 1993. Google Scholar

  • [26] Walker M. L. and Gallimore A. D., “Performance Characteristics of a Cluster of 5-kW Laboratory Hall Thrusters,” Journal of Propulsion and Power, Vol. 23, No. 1, Jan.–Feb. 2007, pp. 35–43. https://doi.org/10.2514/1.19752 LinkGoogle Scholar

  • [27] Huang W., Kamhawi H. and Haag T. W., “Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster,” 33rd International Electric Propulsion Conference, IEPC Paper 2013-058, Washington, DC, Oct. 2013. Google Scholar

  • [28] Huang W., Kamhawi H., Lobbia R. B. and Brown D. L., “Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3708, July 2014. https://doi.org/10.2514/6.2014-3708 LinkGoogle Scholar

  • [29] Diamant K. D., Liang R. and Corey R. L., “The Effect of Background Pressure on SPT-100 Hall Thruster Performance,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3710, July 2014. https://doi.org/10.2514/6.2014-3710 LinkGoogle Scholar

  • [30] Hofer R. R. and Anderson J. R., “Finite Pressure Effects in Magnetically Shielded Hall Thrusters,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2014-3709, July 2014. https://doi.org/10.2514/6.2014-3709 LinkGoogle Scholar

  • [31] Tighe W. G., Spektor R. and Diamant K. D., “Effects of Background Pressure on the NASA 173M Hall Current Thruster Performance,” 34th International Electric Propulsion Conference, AIAA Paper 2015-152, July 2015. Google Scholar

  • [32] Diamant K. D., Curtiss T. J., Spektor R., Beiting E. J., Hruby V., Pote B., Kolencik J. and Paintal S., “Performance and Plume Characterization of the BHT-1500 Hall Thruster,” 34th International Electric Propulsion Conference, Electric Rocket Propulsion Soc. Paper 2015-069, Cleveland, OH, July 2015. Google Scholar

  • [33] Frieman J. D., “Characterization of Background Neutral Flows in Vacuum Test Facilities and Impacts on Hall Effect Thruster Operation,” Ph.D. Dissertation, Aerospace Engineering, Georgia Inst. of Technology, Atlanta, GA, 2017. Google Scholar

  • [34] Snyder J. S., Lenguito G., Frieman J. D., Haag T. W. and Mackey J. A., “Effects of Background Pressure on SPT-140 Hall Thruster Performance,” Journal of Propulsion and Power, Vol. 36, No. 5, Sept. 2020, pp. 668–676. https://doi.org/10.2514/1.B37702 LinkGoogle Scholar

  • [35] Piragino A., Faraji F., Reza M., Ferrato E., Piraino A. and Andreussi T., “Background Pressure Effects on the Performance of a 20 kW Magnetically Shielded Hall Thruster Operating in Various Configurations,” Aerospace, Vol. 8, No. 3, March 2021, Paper 69. https://doi.org/10.3390/aerospace8030069 Google Scholar

  • [36] Piragino A., Saravia M. M., Giannetti V., Leporini L., Camarri S., Califano F. and Andreussi T., “The Effect of Background Neutrals and Vacuum Chamber on Performance and Plasma Characteristics on Hall Thrusters,” International Electric Propulsion Conference 2022, IEPC Paper 2022-320, Boston, MA, June 2022. Google Scholar

  • [37] Diamant K. D., Spektor R., Beiting E. J., Young J. A. and Curtiss T. J., “The Effects of Background Pressure on Hall Thruster Operation,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2012-3735, Aug. 2012. https://doi.org/10.2514/6.2012-3735 LinkGoogle Scholar

  • [38] Huang W., Kamhawi H., Haag T. W., Lopez Ortega A. and Mikellides I. G., “Facility Effect Characterization Test of NASA’s HERMeS Hall Thruster,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-4828, July 2016. https://doi.org/10.2514/6.2016-4828 LinkGoogle Scholar

  • [39] Yim J. T. and Burt J. M., “Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing,” 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2015-3825, July 2015. https://doi.org/10.2514/6.2015-3825 LinkGoogle Scholar

  • [40] Spektor R., Tighe W. G., Stoltz P. H. and Beckwith K. R. C., “Facility Effects on Hall Thruster Performance Through Cathode Coupling,” 34th International Electric Propulsion Conference, IEPC Paper 2015-309, Kobe, Japan, July 2015. Google Scholar

  • [41] Jorns B. A. and Byrne M. P., “Model for the Dependence of Cathode Voltage in a Hall Thruster on Facility Pressure,” Plasma Sources Science and Technology, Vol. 30, No. 1, Jan. 2021, Paper 015012. https://doi.org/10.1088/1361-6595/abd3b6 CrossrefGoogle Scholar

  • [42] Sommerville J. D. and King L. B., “Hall-Effect Thruster–Cathode Coupling, Part I: Efficiency Improvements from an Extended Outer Pole,” Journal of Propulsion and Power, Vol. 27, No. 4, July–Aug. 2011, pp. 744–753. https://doi.org/10.2514/1.50123 LinkGoogle Scholar

  • [43] Sommerville J. D., “Hall-Effect Thruster-Cathode Coupling: The Effect of Cathode Position and Magnetic Field Topology,” Ph.D. Dissertation, Mechanical Engineering, Michigan Technological Univ., Houghton, MI, 2009. Google Scholar

  • [44] Frieman J. D., King S. T., Walker M. L., Khayms V. and King D. Q., “Electrical Facility Effects on Hall Thruster Cathode Coupling: Performance and Plume Properties,” Journal of Propulsion and Power, Vol. 30, No. 6, Nov.–Dec. 2014, pp. 1471–1479. https://doi.org/10.2514/1.B35308 LinkGoogle Scholar

  • [45] Frieman J. D., Walker J. A., Walker M. L., Khayms V. and King D. Q., “Electrical Facility Effects on Hall Thruster Cathode Coupling: Performance and Plume Properties,” Journal of Propulsion and Power, Vol. 32, No. 1, Jan.–Feb. 2016, pp. 251–264. https://doi.org/10.2514/1.B35683 LinkGoogle Scholar

  • [46] Walker J. A., Frieman J. D., Walker M. L., Khayms V., King D. Q. and Peterson P. Y., “Electrical Facility Effects on Hall-Effect-Thruster Cathode Coupling: Discharge Oscillations and Facility Coupling,” Journal of Propulsion and Power, Vol. 32, No. 4, July–Aug. 2017, pp. 844–855. https://doi.org/10.2514/1.B35835 Google Scholar

  • [47] Nakles M. R. and Hargus W. A., “Background Pressure Effects on Ion Velocity Distribution Within a Medium-Power Hall Thruster,” Journal of Propulsion and Power, Vol. 27, No. 4, July–Aug. 2011, pp. 737–743. https://doi.org/10.2514/1.48027 LinkGoogle Scholar

  • [48] Mazouffre S., “Laser-Induced Fluorescence Diagnostics of the Cross-Field Discharge of Hall Thrusters,” Plasma Sources Science and Technology, Vol. 22, No. 1, Nov. 2013, Paper 013001. https://doi.org/10.1088/0963-0252/22/1/013001 Google Scholar

  • [49] Spektor R., Tighe W. G. and Kamhawi H., “Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-4624, July 2016. https://doi.org/10.2514/6.2016-4624 LinkGoogle Scholar

  • [50] Cusson S. E., Dale E. T., Jorns B. A. and Gallimore A. D., “Acceleration Region Dynamics in a Magnetically Shielded Hall Thruster,” Physics of Plasmas, Vol. 26, No. 2, Feb. 2019, Paper 023506. https://doi.org/10.1063/1.5079414 Google Scholar

  • [51] MacDonald-Tenenbaum N., Pratt Q., Nakles M. R., Pilgram N., Holmes M. and Hargus W. A., “Background Pressure Effects on Ion Velocity Distributions in an SPT-100 Hall Thruster,” Journal of Propulsion and Power, Vol. 35, No. 2, March–April 2019, pp. 403–412. https://doi.org/10.2514/1.B37133 LinkGoogle Scholar

  • [52] Hargus W. A., Tango L. J. and Nakles M. R., “Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration,” 33rd International Electric Propulsion Conference, IEPC Paper 2013-340, Washington, DC, Oct. 2013. Google Scholar

  • [53] Peterson P. Y., Kamhawi H., Huang W., Yim J. T., Herman D. A., Williams G. J., Gilland J. H. and Hofer R. R., “NASA’s HERMeS Hall Thruster Electrical Configuration Characterization,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-5027, July 2016. https://doi.org/10.2514/6.2016-5027 LinkGoogle Scholar

  • [54] Kamhawi H., Huang W., Haag T. W., Yim J. T., Herman D. A., Peterson P. Y., Williams G. J., Gilland J. H., Hofer R. R. and Mikellides I. G., “Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA’S Hall Effect Rocket with Magnetic Shielding Thruster,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2016-4826, July 2016. https://doi.org/10.2514/6.2016-4826 LinkGoogle Scholar

  • [55] Hansen J. and Persson W., “Revised Analysis of Singly Ionized Xenon, Xe II,” Physica Scripta, Vol. 36, No. 4, 1987, pp. 602–643. https://doi.org/10.1088/0031-8949/36/4/005 CrossrefGoogle Scholar

  • [56] Huang W., “Study of Hall Thruster Discharge Channel Wall Erosion via Optical Diagnostics,” Ph.D. Dissertation, Aerospace Engineering, Univ. of Michigan, Ann Arbor, MI, 2011. Google Scholar

  • [57] Tsikata S., Cavalier J., Heron A., Honore C., Lemoine N., Gresillon D. and Coulette D., “An Axially Propagating Two-Stream Instability in the Hall Thruster Plasma,” Physics of Plasmas, Vol. 21, No. 7, July 2014, Paper 072116. https://doi.org/10.1063/1.4890025 Google Scholar

  • [58] Hara K. and Treece C., “Ion Kinetics and Nonlinear Saturation of Current-Driven Instabilities Relevant to Hollow Cathode Plasmas,” Plasma Sources Science and Technology, Vol. 28, No. 5, May 2019, Paper 055013. https://doi.org/10.1088/1361-6595/ab18e4 Google Scholar

  • [59] Hara K. and Tsikata S., “Cross-Field Electron Diffusion Due to the Coupling of Drift-Driven Microinstabilities,” Physical Review E, Vol. 102, No. 2, Aug. 2020, Paper 023202. https://doi.org/10.1103/PhysRevE.102.023202 Google Scholar

  • [60] Frieman J. D., Kamhawi H., Huang W., Mackey J. A., Ahern D. M., Peterson P. Y., Gilland J. H., Hall S. J., Hofer R. R., Inaba D., Dao H., Zubair J., Neuhoff J. and Branch N. A., “Characterization Test of the 12.5-kW Advanced Electric Propulsion System Engineering Test Unit Hall Thruster,” 2020 AIAA Propulsion and Energy Forum, AIAA Paper 2020-3626, Aug. 2020. https://doi.org/10.2514/6.2020-3626 Google Scholar