Skip to main content
Skip to article control options
No AccessFull-Length Paper

Drag Prediction Workshop 4 Results Using Different Grids Including Near-Field/Far-Field Drag Analysis

Published Online:https://doi.org/10.2514/1.C032161

CFS Engineering and RUAG Aviation participated in the 4th Drag Prediction Workshop organized by AIAA in June 2009. Calculations were made for the Common Research Model configuration using the Navier–Stokes multiblock solver on the grids generated at CFS Engineering. After the workshop, the polars were computed on the medium multiblock structured grids provided by other workshop participants for the Common Research Model configuration with 0 deg horizontal tail deflection. All these results were processed by a far-field drag extraction tool developed jointly by RUAG Aviation and CFS Engineering. This paper first summarizes the theory behind the drag extraction tool. The results of the different calculations are presented and a detailed analysis of the drag breakdown on the different grids is given. This shows that the spread in drag coefficients obtained on different grids is much lower when using the effective drag computed by the drag extraction tool than when using the near-field drag.

References

  • [1] Levy D. W., Thomas Zickuhr T., Vassberg J., Agrawal S., Wahls R. A., Pirzadeh S. and Hemsch M. J., “Data Summary from the First AIAA Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft, Vol. 40, No. 5, 2003, pp. 875–882. doi:https://doi.org/10.2514/2.6877 LinkGoogle Scholar

  • [2] Redeker G., “DLR-F4 Wing-Body Configuration A Selection of Experimental Test Cases for the Validation of CFD Codes,” AGARD, Rept.  AR-303, 1994. Google Scholar

  • [3] Brodersen O. and Sturmer A., “Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations,” 19th AIAA Applied Aerodynamics Conference, AIAA Paper  2001-2414, 2001. LinkGoogle Scholar

  • [4] Laflin K. R., Klausmeyer S. M., Zickuhr T., Vassberg J. C., Wahls R. A., Morrison J. H., Brodersen O. P., Rakowitz M. E., Tinoco E. N. and Godard J.-L., “Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft, Vol. 42, No. 5, 2005, pp. 1165–1178. doi:https://doi.org/10.2514/1.10771 JAIRAM 0021-8669 LinkGoogle Scholar

  • [5] Vassberg J. C., Tinoco E. N., Mani M., Brodersen O. P., Eisfeld B., Wahls R. A., Morrison J. H., Zickuhr T., Laflin K. R. and Mavriplis D. J., “Abridged Summary of the Third AIAA Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft, Vol. 45, No. 3, 2008, pp. 781–798. doi:https://doi.org/10.2514/1.30572 JAIRAM 0021-8669 LinkGoogle Scholar

  • [6] Brodersen O., Eisfeld B., Raddatz J. and Frohnapfel P., “DLR Results from the Third AIAA Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft, Vol. 45, No. 3, 2008, pp. 823–836. doi:https://doi.org/10.2514/1.30628 JAIRAM 0021-8669 LinkGoogle Scholar

  • [7] Mavriplis D. J., Vassberg J. C., Tinoco E. N., Mani M., Brodersen O. P., Eisfeld B., Wahls R. A., Morrison J. H., Zickuhr T., Levy D. and Murayama M., “Grid Quality and Resolution Issues from the Drag Prediction Workshop Series,” Journal of Aircraft, Vol. 46, No. 3, 2009, pp. 935–950. doi:https://doi.org/10.2514/1.39201 JAIRAM 0021-8669 LinkGoogle Scholar

  • [8] Laflin K. R., “AIAA CFD Drag Prediction Workshop: An Overview,” 25th ICAS Conference, ICAS Paper  2006-2.4.1, 2006. Google Scholar

  • [9] Destarac D., “Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD,” Von Karman Institute Lecture Series CFD-Based Aircraft Drag Prediction and Reduction 2003-02, 2003, pp. 1–62. Google Scholar

  • [10] Destarac D. and van der Vooren J., “Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft: Definition of Physical Drag Components,” Aerospace Science and Technology, Vol. 8, 2004, pp. 545–556. doi:https://doi.org/10.1016/j.ast.2004.03.004 ARSTFZ 1270-9638 CrossrefGoogle Scholar

  • [11] Esquieu S., “Numerical Simulation and Drag Extraction using Patched Grid Calculations,” AIAA Paper  2003-1238, 2003. LinkGoogle Scholar

  • [12] Gariépy M., Trepanier J.-Y. and Masson C., “Convergence Criterion for a Far-Field Drag Prediction and Decomposition Method,” AIAA Journal, Vol. 49, 2011, pp. 2814–2818. doi:https://doi.org/10.2514/1.J050865 AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Gariépy M. and Trépanier J.-Y., “A New Axial Velocity Defect Formulation for a Far-Field Drag Decomposition Method,” Canadian Aeronautics and Space Journal, Vol. 58, No. 2, 2012, pp. 69–82. doi:https://doi.org/10.5589/q12-006 CSPJAE 0008-2821 CrossrefGoogle Scholar

  • [14] Gariépy J.-Y., Trépanier B. and Malouin B., “Generalization of the Far-Field Drag Decomposition Method to Unsteady Flows,” AIAA Journal (to be published). doi:https://doi.org/10.2514/1.J051609 AIAJAH 0001-1452 Google Scholar

  • [15] Vassberg J. C., “Development of a Common Research Model for Applied CFD Validation Studies,” AIAA Paper  2008-6919, 2008. LinkGoogle Scholar

  • [16] van der Vooren J. and Slooff J. W., “CFD Based Drag Prediction; State of the Art, Theory, Prospects,” National Aerospace Laboratory TP-90247-U, Amsterdam, The Netherlands, 1990. Google Scholar

  • [17] Tognaccini T., “Methods for Drag Decomposition, Thrust-Drag Bookkeeping from CFD Calculations,” VKI Lecture Series CFD-Based Aircraft Drag Prediction and Reduction 2003-02, 2003, pp. 1–66. Google Scholar

  • [18] Esquieu S., “Evaluation de la Trainee d’un Avion de Transport a Partir de Calculs Numeriques de Mecanique des Fluides,” Ph.D. Dissertation, Ecole Doctorale de Physique, Univ. of Bordeaux 1, Bordeaux, France, 2003. Google Scholar

  • [19] Van Dam C. P., “Recent Experience with Different Methods of Drag Prediction,” Progress in Aerospace Sciences, Vol. 35, 1999, pp. 751–798. doi:https://doi.org/10.1016/S0376-0421(99)00009-3 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [20] Yamazaki W., Matsushima K. and Nakahashi K., “Aerodynamic Design Optimization Using the Drag-Decomposition Method,” AIAA Journal, Vol. 46, 2008, pp. 1096–1106. doi:https://doi.org/10.2514/1.30342 AIAJAH 0001-1452 LinkGoogle Scholar

  • [21] Yamazaki W., Matsushima K. and Nakahashi K., “Drag Prediction, Decomposition and Visualization in Unstructured Mesh CFD Solver of TAS-Code,” International Journal for Numerical Methods in Fluids, Vol. 57, No. 4, 2008, pp. 417–436. doi:https://doi.org/10.1002/fld.1643 IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [22] Vos J. B., Rizzi A. W., Corjon A., Chaput E. and Soinne E., “Recent Advances in Aerodynamics Inside the NSMB (Navier-Stokes Multiblock) Consortium,” AIAA Paper  1998-0225, 1998. Google Scholar

  • [23] Guillaume M., Gehri A., Stephani P., Vos J. and Manadanis G., “Fluid Structure Interaction Simulation on the F/A-18 Vertical Tail,” AIAA Paper  2010-4613, 2010. LinkGoogle Scholar

  • [24] Ducros F., Laporte F., Souleres T., Guinot V., Moinat P. and Caruelle B., “High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows,” Journal of Computational Physics, Vol. 161, 2000, pp. 114–139. doi:https://doi.org/10.1006/jcph.2000.6492 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [25] Menter F. R., “Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows,” AIAA Paper  1993-2906, 1993. LinkGoogle Scholar

  • [26] Celik I. B., Ghia U., Roache P. J., Freitas C. J., Coleman H. and Raad P. E., “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications,” Journal of Fluids Engineering, Vol. 130, 2008, pp. 078001-1–078001-4. JFEGA4 0098-2202 Google Scholar