Skip to main content
Skip to article control options
No AccessFull-Length Paper

Transonic Aeroelastic Instability Suppression for a Swept Wing by Targeted Energy Transfer

Published Online:https://doi.org/10.2514/1.C032339

Targeted energy transfer is studied as a means for suppression of transonic aeroelastic instabilities of a wind-tunnel swept wing, with a focus on designing a lightweight nonlinear energy sink that improves the critical flutter condition. The aeroelastic response modes of the wing with a nonlinear energy sink coupled to the tip are identified and tested for robustness using a medium-fidelity computational aeroelasticity model, and confirm that robust suppression of transonic aeroelastic instabilities is achievable. Accordingly, a nonlinear energy sink is designed based on a parametric study, and its transonic aeroelastic effects are studied using medium- and high-fidelity models. The results of both models indicate an improvement in stability over a broad range of conditions; the high-fidelity model predicts an approximately 40% increase in the dynamic pressure at the critical stability condition. Finally, a prototype winglet-mounted nonlinear energy sink is modeled to examine its aeroelastic effects. The results show that the nonlinear-energy-sink design is robust, but the winglet design plays a critical role that must be considered in the overall effect.

References

  • [1] Denegri C. M.,, “Limit Cycle Oscillation Flight Test Results of a Fighter with External Stores,” Journal of Aircraft, Vol. 37, No. 5, 2000, pp. 761–769. doi:https://doi.org/10.2514/2.2696 JAIRAM 0021-8669 LinkGoogle Scholar

  • [2] Thompson D. E., and Strganac T. W., “Store-Induced Limit Cycle Oscillations and Internal Resonances in Aeroelastic Systems,” 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA, Reston, VA, 2000, pp. 1413–2000. Google Scholar

  • [3] Bunton R. W. and Denegri C. M.,, “Limit Cycle Oscillation Characteristics of Fighter Aircraft,” Journal of Aircraft, Vol. 37, No. 5, 2000, pp. 916–918. doi:https://doi.org/10.2514/2.2690 JAIRAM 0021-8669 LinkGoogle Scholar

  • [4] Roger K. L. and Hodges G. E., “Active Flutter Suppression—A Flight Test Demonstration,” Journal of Aircraft, Vol. 12, No. 6, 1975, pp. 551–556. doi:https://doi.org/10.2514/3.59833 JAIRAM 0021-8669 LinkGoogle Scholar

  • [5] Strganac T. W., Ko J., Thompson D. E. and Kurdila A. J., “Identification and Control of Limit Cycle Oscillations in Aeroelastic Systems,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 6, 2000, pp. 1127–1133. doi:https://doi.org/10.2514/2.4664 JGCDDT 0162-3192 LinkGoogle Scholar

  • [6] Lee Y. S., Vakakis A. F., Bergman L. A., McFarland D. M. and Kerschen G., “Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfer, Part 1: Theory,” AIAA Journal, Vol. 45, No. 3, 2007, pp. 693–711. doi:https://doi.org/10.2514/1.24062 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Lee Y. S., Kerschen G., Vakakis A. F., Bergman L. A. and McFarland D. M., “Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfer, Part 2: Experiments,” AIAA Journal, Vol. 45, No. 10, 2007, pp. 2391–2400. doi:https://doi.org/10.2514/1.28300 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Hubbard S. A., McFarland D. M., Bergman L. A. and Vakakis A. F., “Targeted Energy Transfer Between a Model Flexible Wing and Nonlinear Energy Sink,” Journal of Aircraft, Vol. 47, No. 6, 2010, pp. 1918–1931. doi:https://doi.org/10.2514/1.C001012 JAIRAM 0021-8669 LinkGoogle Scholar

  • [9] Vakakis A. F., Gendelman O. V., Bergman L. A., McFarland D. M., Kerschen G. and Lee Y. S., Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Springer-Verlag, Berlin, New York, 2008, pp. 93–184. doi:https://doi.org/10.1007/978-1-4020-9130-8 Google Scholar

  • [10] Arnold V. I. (ed.), “Dynamical Systems III: Mathematical Aspects of Classical and Celes-tial Mechanics,” Encyclopaedia of Mathematical Sciences, Vol. 3, Springer–Verlag, Berlin/New York, 1988, p. 210. CrossrefGoogle Scholar

  • [11] Edwards J. W., “Calculated Viscous and Scale Effects on Transonic Aeroelasticity,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1863–1871. doi:https://doi.org/10.2514/1.30082 JAIRAM 0021-8669 LinkGoogle Scholar

  • [12] Edwards J. W., Schuster D. M., Spain C. V., Keller D. F. and Moses R. W., “Transport Wing Flutter Model Transonic Limit Cycle Oscillation Test,” Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1104–1113. doi:https://doi.org/10.2514/1.30079 JAIRAM 0021-8669 LinkGoogle Scholar

  • [13] Hubbard S. A., “Ground Vibration Testing of a Generic Model Transport Wing and Development of a Finite Element Model,” Dept. of Aerospace Engineering, Univ. of Illinois at Urbana–Champaign, TR AE-14-02-UILU-ENG-14-0502, Urbana, IL, 2009. Google Scholar

  • [14] Batoz J. and Tahar M. B., “Evaluation of a New Quadrilateral Thin Plate Bending Element,” International Journal for Numerical Methods in Engineering, Vol. 18, No. 11, 1982, pp. 1655–1677. doi:https://doi.org/10.1002/(ISSN)1097-0207 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [15] Batina J. T., “Efficient Algorithm for Solution of the Unsteady Transonic Small-Disturbance Equation,” Journal of Aircraft, Vol. 25, No. 7, 1988, pp. 598–605. doi:https://doi.org/10.2514/3.45629 JAIRAM 0021-8669 LinkGoogle Scholar

  • [16] Batina J. T., “Unsteady Transonic Small-Disturbance Theory Including Entropy and Vorticity Effects,” Journal of Aircraft, Vol. 26, No. 6, 1989, pp. 531–538. doi:https://doi.org/10.2514/3.45799 JAIRAM 0021-8669 LinkGoogle Scholar

  • [17] McFarland D. M., Beran P. S., Lee Y. S., Bergman L. A. and Vakakis A. F., “Transonic Aeroelastic Analysis Including the Effects of a Nonlinear Energy Sink,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA, Waikiki, HI, Vol. 4, 2007, pp. 3898–3905. Google Scholar

  • [18] Cizmas P. G. A., Gargoloff J. I., Strganac T. W. and Beran P. S., “A Parallel Multigrid Algorithm for Aeroelasticity Simulations,” Journal of Aircraft, Vol. 47, No. 1, 2010, pp. 53–63. doi:https://doi.org/10.2514/1.40201 JAIRAM 0021-8669 LinkGoogle Scholar

  • [19] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Silva W. A. and Bennet R. A., “Using Transonic Small Disturbance Theory for Predicting the Aeroelastic Stability of a Flexible Wind-Tunnel Model,” NASA TR-102617, March 1990. LinkGoogle Scholar

  • [21] Gendelman O. V., Vakakis A. F., Bergman L. A. and McFarland D. M., “Asymptotic Analysis of Passive Nonlinear Suppression Mechanisms for Aeroelastic Instabilities in a Rigid Wing in Subsonic Flow,” SIAM Journal on Applied Mathematics, Vol. 70, No. 5, 2010, pp. 1655–1677. doi:https://doi.org/10.1137/090754819 SMJMAP 0036-1399 CrossrefGoogle Scholar

  • [22] Hubbard S. A., McFarland D. M., Andersen G., Bergman L. A. and Vakakis A. F., “Targeted Energy Transfer Between a Wind-Tunnel Wing and a Nonlinear Energy Sink,” AIAA Journal, 2013, (in review). AIAJAH 0001-1452 Google Scholar