Skip to main content
No AccessFull-Length Paper

Design of an Infinite-Swept-Wing Glove for In-Flight Discrete-Roughness-Element Experiment

Published Online:https://doi.org/10.2514/1.C032490

The Subsonic Aircraft Roughness Glove Experiment is an in-flight experiment designed to meet the NASA Environmentally Responsible Aviation project requirements. The goal of the experiment was to demonstrate the discrete-roughness-element technology to delay transition on a swept wing at transport-relevant conditions and subject to crossflow instability. In this paper, a redesign of that experiment is described for a different aircraft (Gulfstream-IIB), meeting the same requirements, but using a new methodology that promotes infinite-swept-wing flow on the glove test article. The new glove has the designation TAMU-0706. Increasing the demonstrated capabilities of both natural laminar flow and discrete roughness elements is a large step toward practical laminar flow on transport aircraft. Moreover, the infinite-swept-wing flow methodology not only increases the effective test region of the wing glove, but is well adapted for code-validation studies of discrete roughness element and other laminar-flow-control technologies.

References

  • [1] Collier F., Thomas R., Burley C., Nickol C., Lee C. M. and Tong M., “Environmentally Responsible Aviation—Real Solutions for Environmental Challenges Facing Aviation,” 27th International Congress of Aeronautical Sciences, ICAS Paper  2010-1.6.1, Sept. 2010. Google Scholar

  • [2] Bezos-O’Connor G. M., Mangelsdorf M. F., Maliska H. A., Washburn A. E. and Wahls R. A., “Fuel Efficiencies Through Airframe Improvements,” AIAA Paper  2011-3530, June 2011. LinkGoogle Scholar

  • [3] Belisle M. J., Neale T. P., Reed H. L. and Saric W. S., “Design of a Swept-Wing Laminar Flow Control Flight Experiment for Transonic Aircraft,” AIAA Paper  2010-4381, July 2010. LinkGoogle Scholar

  • [4] Belisle M. J., Roberts M. W., Tufts M. W., Tucker A. A., Williams T. C., Saric W. S. and Reed H. L., “Design of the Subsonic Aircraft Roughness Glove Experiment (SARGE),” AIAA Paper  2011-3524, June 2011. Google Scholar

  • [5] Belisle M. J., Roberts M. W., Williams T. C., Tufts M. W., Tucker A. A., Saric W. S. and Reed H. L., “A Transonic Laminar-Flow Wing Glove Flight Experiment: Overview and Design Optimization,” AIAA Paper  2012-2667, June 2012. Google Scholar

  • [6] Hartshorn F., Belisle M. J. and Reed H. L., “Computational Optimization of a Natural Laminar Flow Experimental Wing Glove,” AIAA Paper  2012-0870, Jan. 2012. LinkGoogle Scholar

  • [7] Roberts M. W., Reed H. L. and Saric W. S., “A Transonic Laminar-Flow Wing Glove Flight Experiment: Computational Evaluation and Linear Stability,” AIAA Paper  2012-2668, June 2012; also “Computational Evaluation and Linear Stability of a Transonic Laminar-Flow Wing Glove,” Journal of Aircraft (submitted for publication). Google Scholar

  • [8] Malik M., Liao W., Lee-Rausch E., Li F., Choudhari M. and Chang C.-L., “Computational Analysis of the G-III Laminar Flow Glove,” AIAA Paper  2011-3525, June 2011. LinkGoogle Scholar

  • [9] Saric W. S., Carrillo R. B. and Reibert M. S., “Nonlinear Stability and Transition in 3-D Boundary Layers,” Meccanica, Vol. 33, No. 5, 1998, pp. 469–487. doi:https://doi.org/10.1023/A:1004368526215 MECCB9 0025-6455 CrossrefGoogle Scholar

  • [10] Carpenter A. L., Saric W. S. and Reed H. L., “Roughness Receptivity in Swept-Wing Boundary Layers: Experiments,” International Journal of Engineering Systems Modelling and Simulation, Vol. 2, Nos. 1–2, 2010, pp. 128–138. CrossrefGoogle Scholar

  • [11] Saric W. S., Carpenter A. L. and Reed H. L., “Passive Control of Transition with Roughness in Three-Dimensional Boundary Layers,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 369, No. 1940, April 2011, pp. 1352–1364. PTRMAD 1364-503X CrossrefGoogle Scholar

  • [12] Rhodes R. G., Reed H. L., Saric W. S., Carpenter A. L. and Neale T. P., “Roughness Receptivity in Swept-Wing Boundary Layers—Computations,” International Journal of Engineering Systems Modelling and Simulation, Vol. 2, Nos. 1–2, March 2010, pp. 139–148. CrossrefGoogle Scholar

  • [13] Saric W. S. and Reed H. L., “Toward Practical Laminar Flow Control—Remaining Challenges,” AIAA Paper  2004-2311, July 2004. LinkGoogle Scholar

  • [14] Flight Testing of Laminar Flow Control in High-Speed Boundary Layers,” Saric, Reed, Banks, NATO-RTO-MP-AVT-111, Prague, Oct. 2004. Google Scholar

  • [15] Tucker A. A., Reed H. L. and Saric W. S., “A Flight Test Technique for Precise Angle-of-Attack Measurements with Application to Laminar Flow Control Flight Research,” AIAA Paper  2014-1117, Jan. 2014; also Journal of Aircraft (submitted for publication). JAIRAM 0021-8669 LinkGoogle Scholar

  • [16] Tucker A. A., Reed H. L. and Saric W. S., “Laminar Flow Control Flight Experiment Design and Execution,” AIAA Paper  2014-0909, Jan. 2014; also Journal of Aircraft, 2014. doi:https://doi.org/10.2514/6.2014-0909. JAIRAM 0021-8669 LinkGoogle Scholar

  • [17] Deyhle H. and Bippes H., “Disturbance Growth in an Unstable Three-Dimensional Boundary Layer and Its Dependence on Environmental Conditions,” Journal of Fluid Mechanics, Vol. 316, June 1996, pp. 73–114. doi:https://doi.org/10.1017/S0022112096000456 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [18] Rizzetta D. P., Visbal M. R., Reed H. L. and Saric W. S., “Direct Numerical Simulation of Discrete Roughness on a Swept Wing Leading Edge,” AIAA Journal, Vol. 48, No. 11, 2010, pp. 2660–2673. doi:https://doi.org/10.2514/1.J050548 AIAJAH 0001-1452 LinkGoogle Scholar

  • [19] Hunt L. E. and Saric W. S., “Boundary-Layer Receptivity of Three-Dimensional Roughness Arrays on a Swept-Wing,” AIAA Paper  2011-3881, June 2011. LinkGoogle Scholar

  • [20] Duncan G. T., Crawford B. K., Tufts M. W., Saric W. S. and Reed H. L., “Flight Experiments on the Effects of Step Excrescences on Swept-Wing Transition,” International Journal of Engineering Systems Modelling and Simulation (to be published). Google Scholar

  • [21] Crawford B. K., Duncan G. T., Tufts M. W., Saric W. S. and Reed H. L., “Effects of Step and Gap Excrescences on a Swept Wing in a Low-Disturbance Wind Tunnel,” AIAA Paper  2014-0910, Jan. 2014. Google Scholar

  • [22] Tufts M. W., Duncan G. T., Crawford B. K., Reed H. L. and Saric W. S., “Computational Investigation of Surface Excrescences on a Laminar Flow Airfoil,” International Journal of Engineering Systems Modelling and Simulation, 2014. CrossrefGoogle Scholar

  • [23] Morkovin M. V., Reshotko E. and Herbert T., “Transition in Open Flow Systems—A Reassessment,” Bulletin of the American Physical Society, Vol. 39, No. 9, 1994, p. 1882. BAPSA6 0003-0503 Google Scholar

  • [24] Reed H. L. and Saric W. S., “Transition Mechanisms for Transport Aircraft,” AIAA Paper  2008-3743, 2008. Google Scholar

  • [25] Joslin R. D., “Aircraft Laminar Flow Control,” Annual Review of Fluid Mechanics, Vol. 30, No. 1, 1998, pp. 1–29. doi:https://doi.org/10.1146/annurev.fluid.30.1.1 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [26] Saric W. S., “Görtler Vortices,” Annual Review of Fluid Mechanics, Vol. 26, No. 11, 1994, pp. 379–409. ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [27] Reed H. L. and Saric W. S., “Attachment-Line Heating in a Compressible Flow,” Journal of Engineering Mathematics, Vol. 84, No. 1, 2014, pp. 99–110. doi:https://doi.org/10.1007/s10665-013-9662-5 JLEMAU 0022-0833 CrossrefGoogle Scholar

  • [28] Pfenninger W., Laminar Flow Control—Laminarization, AGARD, Rept. No.  654, 1977. Google Scholar

  • [29] Poll D. I. A., “Some Observations of the Transition Process on the Windward Face of a Long Yawed Cylinder,” Journal of Fluid Mechanics, Vol. 150, No. 1, 1985, pp. 329–356. JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [30] Mack L. M., Boundary-Layer Linear Stability Theory, AGARD, Rept. No.  709, 1984. Google Scholar

  • [31] Reed H. L., Saric W. S. and Arnal D., “Linear Stability Theory Applied to Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 28, Jan. 1996, pp. 389–428. doi:https://doi.org/10.1146/annurev.fl.28.010196.002133 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [32] van Ingen J. L., “A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region,” Delft Univ. of Technology, Rept. VTH 74, Delft, The Netherlands, 1956. Google Scholar

  • [33] Reed H. L. and Saric W. S., “Stability of Three-Dimensional Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 21, 1989, pp. 235–284. doi:https://doi.org/10.1146/annurev.fl.21.010189.001315 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [34] Saric W. S., Reed H. L. and White E. B., “Stability and Transition of Three-Dimensional Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 35, No. 1, 2003, pp. 413–440. doi:https://doi.org/10.1146/annurev.fluid.35.101101.161045 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [35] Type Certificate A12EA Rev. 37,” Federal Aviation Administration, 2011. Google Scholar

  • [36] Johnson F. T., Samant S. S., Bieterman M. B., Melvin R. G., Young D. P., Bussoletti J. E. and Hilmes C. L., “TranAir: A Full-Potential, Solution-Adaptive, Rectangular Grid Code for Predicting Subsonic, Transonic, and Supersonic Flows About Arbitrary Configurations,” NASA CR-4348, 1992. Google Scholar

  • [37] Kulfan B. M. and Bussoletti J. E., “‘Fundamental’ Parametric Geometry Representations for Aircraft Component Shapes,” AIAA Paper  2006-6948, Sept. 2006. LinkGoogle Scholar

  • [38] Kulfan B. M., “A Universal Parametric Geometry Representation Method—‘CST’,” AIAA Paper  2007-0062, Jan. 2007. LinkGoogle Scholar