Skip to main content
Skip to article control options
No AccessFull-Length Paper

Bayesian Sensitivity Analysis of Flight Parameters in a Hard-Landing Analysis Process

Published Online:https://doi.org/10.2514/1.C032757

A flight parameter sensor simulation model was developed to assess the conservatism of the landing gear component loads calculated using a typical hard-landing analysis process. Conservatism exists due to factors of safety that are incorporated into any hard-landing analysis process to account for uncertainty in the measurement of certain flight parameters. The flight parameter sensor simulation model consists of 1) an aircraft and landing gear dynamic model to determine the “actual” landing gear loads during a hard landing; 2) an aircraft sensor and data acquisition model to represent the aircraft sensors and flight data recorder systems to investigate the effect of signal processing on the flight parameters; and 3) an automated hard-landing analysis process, representative of that used by airframe and equipment manufacturers, to determine the “simulated” landing gear loads. Using a technique of Bayesian sensitivity analysis, a number of flight parameters are varied in the flight parameter sensor simulation model to gain an understanding of the sensitivity of the difference between actual and simulated loads to the individual flight parameters in symmetric and asymmetric two-point landings. This study shows that the error can be reduced by learning the true value of the following flight parameters: longitudinal tire–runway friction coefficient, aircraft vertical acceleration (related to vertical descent velocity), lateral acceleration (related to lateral velocity), Euler roll angle, mass, center of gravity position, and main landing gear tire type. It was also shown that, due to the modeling techniques used, shock absorber servicing state and tire pressure do not contribute significantly to the error.

References

  • [1] Certification Specifications for Large Aeroplanes, CS25, European Aviation Safety Agency, 2008. Google Scholar

  • [2] Airworthiness Standards: Transport Category Airplanes, FAR 25, Federal Aviation Authority, 2008. Google Scholar

  • [3] Schmidt R. K. and Sartor P., “Landing Gear,” Encyclopaedia of Structural Health Monitoring, edited by Boller C., Chang F.-K. and Fujino Y., Wiley, Chichester, U.K., 2009, pp. 1983–1994. Google Scholar

  • [4] Sartor P., Bond D., Staszewski W. and Schmidt R. K., “Assessment of the Value of an Overload Indication System Through Analysis of Aviation Industry Occurrence Data,” AIAA Journal of Aircraft, Vol. 46, No. 5, 2009, pp. 1692–1705. doi:https://doi.org/10.2514/1.42424 LinkGoogle Scholar

  • [5] Sartor P., Schmidt R. K., Menezes R., Bond D. and Staszewski W., “Validation and Verification of a Hard Landing Indication System for Aircraft Landing Gear,” Proceedings of Seventh International Workshop on Structural Health Monitoring, DEStech Publ., Lancaster, PA, 2009, pp. 190–200. Google Scholar

  • [6] Saltelli A., Chan K. and Scott E. M., Sensitivity Analysis, Wiley, Chichester, U.K., 2000, p. 494. Google Scholar

  • [7] Oakley J. E. and O'Hagen A., “Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach,” Journal of the Royal Statistical Society Series B, Vol. 66, No. 3, 2004, pp. 751–769. doi:https://doi.org/10.1111/rssb.2004.66.issue-3 CrossrefGoogle Scholar

  • [8] Worden K. and Manson G., “On the Identification of Hysteretic Systems, Part I: Fitness Landscapes and Evolutionary Identification,” Mechanical Systems and Signal Processing, Vol. 29, 2012, pp. 201–212. doi:https://doi.org/10.1016/j.ymssp.2012.01.004 CrossrefGoogle Scholar

  • [9] Wright J. R. and Cooper J. E., Introduction to Aircraft Aeroelasticity and Loads, Wiley, Chichester, U.K., 2007, p. 574. LinkGoogle Scholar

  • [10] Currey N. S., Aircraft Landing Gear Design: Principles and Practices, AIAA, Washington, D.C., 1988. LinkGoogle Scholar

  • [11] Milwitzky B., Lindquist D. and Potter D., “An Experimental Study of Applied Ground Loads in Landing,” NACA Tech. Rept. 1248, 1955. Google Scholar

  • [12] Lomax T. L., Structural Loads Analysis for Commercial Transport Aircraft: Theory and Practice, AIAA Education Series, AIAA, Reston, VA, 1996, p. 296. LinkGoogle Scholar

  • [13] Becker W., Rowson J., Oakley J., Yoxall A., Manson G. and Worden K., “Bayesian Sensitivity Analysis of a Model of the Aortic Valve,” Journal of Biomechanics, Vol. 44, No. 8, 2011, pp. 1499–1506. doi:https://doi.org/10.1016/j.jbiomech.2011.03.008 CrossrefGoogle Scholar

  • [14] Kennedy M. C. and O’Hagen A., “Bayesian Calibration of Computer Models,” Journal of the Royal Statistical Society Series B (Statistical Methodology), Vol. 63, No. 3, 2001, pp. 425–464. doi:https://doi.org/10.1111/rssb.2001.63.issue-3 CrossrefGoogle Scholar

  • [15] Kennedy M. C., Anderson C. W., Conti S. and O'Hagen A., “Case Studies in Gaussian Process Modelling of Computer Codes,” Reliability Engineering and System Safety, Vol. 91, Nos. 10–11, 2006, pp. 1301–1309. CrossrefGoogle Scholar

  • [16] Sacks J., Welch W. J., Mitchell T. J. and Wynn H. P., “Design and Analysis of Computer Experiments,” Statistical Science, Vol. 4, No. 4, 1989, pp. 409–423. doi:https://doi.org/10.1214/ss/1177012413 CrossrefGoogle Scholar

  • [17] Rasmussen C. E. and Williams C. K., Gaussian Processes for Machine Learning, The MIT Press, 2005, p. 266, http://www.gaussianprocess.org/gpml/chapters/RW.pdf [accessed 27 March 2016]. CrossrefGoogle Scholar

  • [18] Sobol I., “Sensitivity Estimates for Non Linear Mathematical Models,” Mathematical Modeling Computer Experiment, Vol. 1, No. 4, 1993, pp. 407–414. Google Scholar

  • [19] Petropoulos M, anf Wooster G., Carlson T., Kennedy M. C. and Scholze M., “A Global Bayesian Sensitivity Analysis of the 1D SimSphere Soil-Vegetation-Atmospheric Transfer (SVAT) Model Using Gaussian Model Emulation,” Ecological Modelling, Vol. 220, No. 19, 2009, pp. 2427–2440. doi:https://doi.org/10.1016/j.ecolmodel.2009.06.006 CrossrefGoogle Scholar

  • [20] Homma T. and Saltelli A., “Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliabillity Engineering & System Safety, Vol. 52, No. 1, 1996, pp. 1–17. doi:https://doi.org/10.1016/0951-8320(96)00002-6 CrossrefGoogle Scholar

  • [21] Kennedy M. C., “GEM-SA Homepage,” http://ctcd.group.shef.ac.uk/gem.html [accessed March 2016]. Google Scholar

  • [22] Le Gratiet L., Cannamela C. and Iooss B., “A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes,” SIAM/ASA Journal of Uncertainty Quantification, Vol. 2, No. 1, 2014, pp. 336–363. doi:https://doi.org/10.1137/130926869 CrossrefGoogle Scholar

  • [23] Gramacy R. B. and Taddy M., “Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models,” Journal of Statistical Software, Vol. 33, No. 6, 2010, https://www.jstatsoft.org/article/view/v033i06 [accessed March 2016]. CrossrefGoogle Scholar

  • [24] Becker W., Worden K. and Rowson J., “Bayesian Sensitivity Analysis of Bifurcating Nonlinear Models,” Mechanical Systems and Signal Processing, Vol. 34, Nos. 1–2, 2013, pp. 57–75. CrossrefGoogle Scholar

  • [25] Worden K. and Becker W., “On the Identification of Hysteretic Systems, Part II: Bayesian Sensitivity Analysis and Parameter Confidence,” Mechanical Systems and Signal Processing, Vol. 29, 2012, pp. 213–227. doi:https://doi.org/10.1016/j.ymssp.2012.01.005 CrossrefGoogle Scholar

  • [26] Bayarri M., Berger J., Higdon D., Kennedy M., Kottas A., Paulo R., Sacks J., Cafeo J., Cavendish J., Lin C. and Tu J., “A Framework for Validation of Computer Models,” Tech. Rept., National Institute of Statistical Sciences, General Motors, 2002. Google Scholar

  • [27] Milwitzky B., Lindquist D. and Potter D., “An Experimental Study of Wheel Spin-Up Drag Loads,” NACA Tech. Rept.  3246, 1954. Google Scholar

  • [28] The Tyre Grip,” Tech. Rept., Michelin. Google Scholar