Skip to main content
No AccessFull-Length Paper

Computational Evaluation and Linear Stability of a Transonic Laminar-Flow Wing Glove

Published Online:https://doi.org/10.2514/1.C032779

The Flight Research Laboratory at Texas A&M University has proposed conducting both natural laminar flow and passive laminar flow control flight-test experiments through NASA’s Environmentally Responsible Aviation program in partnership with Dryden Flight Research Center and Langley Research Center. The flight-test program will further explore discrete roughness element technology and demonstrate its effectiveness at extending laminar flow beyond the natural transition location. Texas A&M University completed a wing-glove design, designated TAMU-06-05, that was to be installed on a Gulfstream III testbed aircraft. Detailed analysis on the wing-glove design effectiveness is given, focusing on flowfield behavior and boundary-layer stability characteristics near the glove using full-aircraft computational-fluid-dynamics calculations.

References

  • [1] Joslin R. D., “Overview of Laminar Flow Control,” NASA TP-1998-208705, Oct. 1998. Google Scholar

  • [2] Thibert J. J., Reneaux J. and Schmitt R. V., “ONERA Activities on Drag Reduction,” Proceedings of the 17th Congress of the International Council of the Aeronautical Sciences, AIAA, Washington, D.C., Sept. 1990, pp. 1053–1059. Google Scholar

  • [3] Saric W. S., Carpenter A. L. and Reed H. L., “Passive Control of Transition in Three-Dimensional Boundary Layers, with Emphasis on Discrete Roughness Elements,” Philosophical Transactions of the Royal Society A, Vol. 369, No. 1940, April 2011, pp. 1352–1364. doi:https://doi.org/10.1098/rsta.2010.0368 CrossrefGoogle Scholar

  • [4] Saric W. S., Reed H. L. and White E., “Stability of 3-D Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 35, Jan. 2003, pp. 413–442. doi:https://doi.org/10.1146/annurev.fluid.35.101101.161045 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [5] Radeztsky R. H., Reibert M. S. and Saric W. S., “Effect of Isolated Micron-Sized Roughness on Transition in Swept-Wing Flows,” AIAA Journal, Vol. 37, No. 11, 1999, pp. 1370–1377. doi:https://doi.org/10.2514/2.635 AIAJAH 0001-1452 LinkGoogle Scholar

  • [6] Saric W. S., Carrillo R. B. and Reibert M. S., “Leading-Edge Roughness As a Transition Control Mechanism,” 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  1998-0781, Jan. 1998. LinkGoogle Scholar

  • [7] Saric W. S. and Reed H. L., “Crossflow Instabilities—Theory & Technology,” 41st Aerospace Sciences Meeting and Exhibit, AIAA Paper  2003-0771, Jan. 2003. LinkGoogle Scholar

  • [8] Carpenter A. L., Saric W. S. and Reed H. L., “In-Flight Receptivity Experiments on a 30-Degree Swept-Wing Using Micron-Sized Discrete Roughness Elements,” 47th AIAA Aerospace Sciences Meeting, AIAA Paper  2009-0590, Jan. 2009. LinkGoogle Scholar

  • [9] Belisle M. J., Roberts M. W., Williams T. C., Tufts M. W., Tucker A. A., Saric W. S. and Reed H. L., “A Transonic Laminar-Flow Wing Glove Flight Experiment: Overview and Design Optimization,” 30th AIAA Applied Aerodynamics Conference, AIAA Paper  2012-2667, June 2012. LinkGoogle Scholar

  • [10] Belisle M. J., Neale T. P., Reed H. L. and Saric W. S., “Design of a Swept-Wing Laminar Flow Control Experiment for Transonic Aircraft,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4381, June 2010. LinkGoogle Scholar

  • [11] Belisle M. J., Roberts M. W., Tufts M. W., Tucker A. A., Williams T. C., Saric W. S. and Reed H. L., “Design of the Subsonic Aircraft Roughness Glove Experiment,” 29th AIAA Applied Aerodynamics Conference, AIAA Paper  2011-3524, June 2011. Google Scholar

  • [12] Rhodes R. G., Carpenter A. L., Reed H. L. and Saric W. S., “CFD Analysis of Flight-Test Configuration for LFC on Swept Wings,” 26th AIAA Applied Aerodynamics Conference, AIAA Paper  2008-7336, Aug. 2008. LinkGoogle Scholar

  • [13] Rhodes R. G., Reed H. L., Saric W. S., Carpenter A. L. and Neale T. P., “Roughness Receptivity in Swept-Wing Boundary Layers—Computations,” International Journal of Engineering Systems Modeling and Simulation, Vol. 2, Nos. 1–2, March 2010, pp. 139–148. doi:https://doi.org/10.1504/IJESMS.2010.031877 CrossrefGoogle Scholar

  • [14] Vassberg J. C., Tinoco E. N., Mani M., Rider B., Zickuhr T., Levy D. W., Brodersen O. P., Eisfeld B., Crippa S., Wahls R. A., Morrison J. H., Mavriplis D. J. and Murayam M., “Summary of the Fourth AIAA CFD Drag Prediction Workshop,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4547, June 2010. LinkGoogle Scholar

  • [15] Oberkampf W. L., Sindir M. M. and Conlisk A. T., “Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,” AIAA Paper  G-077-1998, Jan. 1998. CrossrefGoogle Scholar

  • [16] Menter F. L., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] U.S. Standard Atmosphere, 1976,” NASA TM-X-74335, 1976. Google Scholar

  • [18] Hartshorn F., Belisle M. J. and Reed H. L., “Computational Optimization of a Natural Laminar Flow Experimental Wing Glove,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper  2012-0870, Jan. 2012. LinkGoogle Scholar

  • [19] Chang C., “Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual,” NASA TM-2004-213233, June 2004. Google Scholar

  • [20] Chang C., “LASTRAC.3d: Transition Prediction in 3D Boundary Layers,” 34th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2004-2542, June 2004. LinkGoogle Scholar

  • [21] Roberts M. W., “Computational Evaluation of a Transonic Laminar-Flow Wing Glove Design,” M.S. Thesis, Aerospace Engineering Dept., Texas A&M Univ., College Station, TX, 2012. Google Scholar

  • [22] Malik M., Liao W., Lee-Rausch E., Li F., Choudhari M. and Chang C., “Computational Analysis of the G-III Laminar Flow Glove,” 29th AIAA Applied Aerodynamics Conference, AIAA Paper  2011-3525, June 2011. LinkGoogle Scholar

  • [23] Liao W., Malik M., Lee-Rausch E., Li F., Nielson E. J., Buning P. G., Chang C. and Choudhari M., “Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids,” 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2012-2690, June 2012. LinkGoogle Scholar

  • [24] Malik M., Liao W., Li F. and Choudhari M., “DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper  2013-0412, Jan. 2013. LinkGoogle Scholar