Skip to main content
Skip to article control options
No AccessFull-Length Paper

Experimental and Computational Analysis of Rigid Flapping Wings for Micro Air Vehicles

Published Online:https://doi.org/10.2514/1.C032853

Targeted experiments in parallel with a systematic computational-fluid-dynamics analysis were performed for a micro-air-vehicle-scale rigid flapping wing in forward flight. Two-component time-resolved particle-image-velocimetry measurements were performed in an open-circuit wind tunnel on a wing undergoing pure flap-wing kinematics at a fixed wing-pitch angle. Chordwise velocity fields were obtained at equally spaced spanwise sections along the wing (30 to 90% span) at two instants during the flap cycle (middownstroke and midupstroke) for the reference Reynolds numbers of 15,000. The flowfield measurements were used for the validation of the three-dimensional computational-fluid-dynamics model. The computational-fluid-dynamics analysis used a compressible Reynolds-averaged Navier–Stokes solver to resolve the complex, highly vortical, three-dimensional flow. The objectives of the combined efforts were to understand the unsteady aerodynamic mechanisms and their relation to force production on a rigid wing undergoing an avian-type flapping motion. Overall, the computational-fluid-dynamics results showed good agreement with the experimental data for resolution of the overall highly unsteady and vortical flowfield. A control-volume approach used to calculate the strength of the leading-edge vortex from the particle-image-velocimetry measurements and from the computational-fluid-dynamics-generated flowfields showed comparable results. A hybrid momentum-based method was used to estimate the sectional vertical force coefficient from the particle-image-velocimetry-measured flowfield, which agreed well with the computational-fluid-dynamics force prediction over a range of flapping frequencies and wing-pitch angles. In general, it was observed that the flow over the wing was highly susceptible to changes in induced angle of attack resulting from the flapping motion and variations in reduced frequency, which manifested in the predicted airloads. Based on the computational analysis, the spanwise flow component was not significant, except near the wing tip, and therefore most of the vertical force and propulsive thrust produced could be explained using the magnitude and direction of the sectional lift and drag forces acting on the wing. For the present wing kinematics, most of the upward vertical force was produced during the downstroke and positive propulsive thrust during the upstroke, which shows the need for appropriate temporal and spanwise pitch modulation of the wing along with flapping to produce positive vertical force and propulsive thrust during the entire flap cycle.

References

  • [1] Azuma A., Okamoto M. and Yasuda K., “Aerodynamic Characteristics of Wings at Low Reynolds Number,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, edited by Mueller T. J., Vol. 195, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2001, pp. 341–398, Chap. 1. Google Scholar

  • [2] Mueller T. J. and DeLaurier J. D., “Aerodynamics of Small Vehicles,” Annual Review of Fluid Mechanics, Vol. 35, No. 1, 2003, pp. 89–111. doi:https://doi.org/10.1146/annurev.fluid.35.101101.161102 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [3] Ol M. V., “Unsteady Aerodynamics for Micro Air Vehicles,” Final Report of Task Group AVT-149, NATO Research and Technology Organization, TR-AC/323 (AVT-149) TP/332, Brussels, 2010. Google Scholar

  • [4] Shyy W., Lian Y., Tang J., Viieru D. and Liu H., Aerodynamics of Low Reynolds Number Flyers, Cambridge Univ. Press, New York, 2008, pp. 29–35, 45–49, 144–148. CrossrefGoogle Scholar

  • [5] Leishman J. G., Principles of Helicopter Aerodynamics, 2nd ed., Cambridge Univ. Press, Cambridge, England, U.K., 2006, pp. 334–337. Google Scholar

  • [6] Shyy W. and Liu H., “Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices,” Journal of Aircraft, Vol. 45, No. 12, 2007, pp. 2817–2819. doi:https://doi.org/10.2514/1.33205 JAIRAM 0021-8669 AbstractGoogle Scholar

  • [7] Liu T., “Comparative Scaling of Flapping and Fixed Wing Flyers,” AIAA Journal, Vol. 44, No. 1, Jan. 2006, pp. 24–33. doi:https://doi.org/10.2514/1.4035 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Pines D. J. and Bohorquez F., “Challenges Facing Future Micro-Air-Vehicle Development,” Journal of Aircraft, Vol. 43, No. 2, March–April 2006, pp. 290–305. doi:https://doi.org/10.2514/1.4922 JAIRAM 0021-8669 LinkGoogle Scholar

  • [9] Ramasamy M. and Leishman J. G., “Phase-Locked Particle Image Velocimetry Measurements of a Flapping Wing,” Journal of Aircraft, Vol. 43, No. 6, Nov.–Dec. 2006, pp. 1867–1875. doi:https://doi.org/10.2514/1.21347 JAIRAM 0021-8669 LinkGoogle Scholar

  • [10] Faruque I., Samuel P. and Humbert J., “Yaw Dynamics Identification of an Insect-Inspired Flapping Wing Micro Air Vehicle,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2014-1468, Jan. 2014. LinkGoogle Scholar

  • [11] Koopmans J., “Delfly Freeflight—Autonomous Flight of the Delfly in the Wind Tunnel Using Low-Cost Sensors,” M.S. Thesis, Delft Univ. of Technology, Delft, The Netherlands, June 2012. Google Scholar

  • [12] Keennon M., Klingebiel K., Won W. and Andriukov A., “Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper  2012-0588, Jan. 2012. LinkGoogle Scholar

  • [13] Mayo D. and Leishman J., “Comparison of Hovering Efficiency of Rotating Wing and Flapping Wing Micro Air Vehicles,” Journal of the American Helicopter Society, Vol. 55, No. 2, April 2010, p. 25001. doi:https://doi.org/10.4050/JAHS.55.025001 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [14] Ellington C. P., “Insects Versus Birds: The Great Divide,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2006-0035, Jan. 2006. LinkGoogle Scholar

  • [15] Weis-Fogh T, “Flapping Flight and Power in Birds and Insects,” Swimming and Flying in Nature, edited by Wu T. Y. T., Brokaw C. J. and Brennen C., Vol. 2, Plenum, London, 1975, pp. 729–762. CrossrefGoogle Scholar

  • [16] Maxworthy T., “The Fluid Dynamics of Insect Flight,” Annual Review of Fluid Mechanics, Vol. 13, No. 1, 1981, pp. 329–350. doi:https://doi.org/10.1146/annurev.fl.13.010181.001553 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [17] Willmott A. P. and Ellington C. P., “The Mechanics of Flight in the Hawkmoth Manduca Sexta, 2. Aerodynamic Consequences of Kinematic and Morphological Variation,” Journal of Experimental Biology, Vol. 200, Pt. 21, 1997, pp. 2723–2745. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [18] Benedict M., Coleman D. and Mayo D., “Force and Flowfield Measurements on a Rigid Wing Undergoing Hover-Capable Flapping and Pitching Kinematics in Air at MAV-Scale Reynolds Numbers,” 54th AIAA ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2013-1706, April 2013. LinkGoogle Scholar

  • [19] Mayo D. and Jones A., “Evolution and Breakdown of a Leading Edge Vortex on a Rotating Wing,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper  2013-0843, Jan. 2013. LinkGoogle Scholar

  • [20] Van den Berg C. and Ellington C. P., “The Vortex Wake of a “Hovering” Model Hawkmoth,” Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, Vol. 352, No. 1351, 1997, pp. 317–328. doi:https://doi.org/10.1098/rstb.1997.0023 PTRBAE 0962-8436 CrossrefGoogle Scholar

  • [21] Van den Berg C. and Ellington C. P., “The Three-Dimensional Leading-Edge Vortex of a ‘Hovering’ Model Hawkmoth,” Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, Vol. 352, No. 1351, 1997, pp. 329–340. doi:https://doi.org/10.1098/rstb.1997.0024 PTRBAE 0962-8436 CrossrefGoogle Scholar

  • [22] Ellington C. P. and Usherwood J. R., “Lift and Drag Characteristics of Rotary and Flapping Wings,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, edited by Mueller T. J., Vol. 195, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2001, Chap. 12. Google Scholar

  • [23] Dickinson M. H., Lehmann F.-O. and Sane S. P., “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, Vol. 284, No. 5422, June 1999, pp. 1954–1960. doi:https://doi.org/10.1126/science.284.5422.1954 SCIEAS 0036-8075 CrossrefGoogle Scholar

  • [24] Birch J. M. and Dickinson M. H., “Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings,” Nature, Vol. 412, No. 6848, Aug. 2001, pp. 729–733. doi:https://doi.org/10.1038/35089071 CrossrefGoogle Scholar

  • [25] Birch J. M. and Dickinson M. H., “The Influence of Wing Wake Interactions on the Production of Aerodynamic Forces in Flapping Fight,” Journal of Experimental Biology, Vol. 206, No. 13, July 2003, pp. 2257–2272. doi:https://doi.org/10.1242/jeb.00381 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [26] Birch J. M., Dickson W. B. and Dickinson M. H., “Force Production and Flow Structure of the Leading Edge Vortex on Flapping Wings at High and Low Reynolds Numbers,” Journal of Experimental Biology, Vol. 207, No. 7, 2004, pp. 1063–1072. doi:https://doi.org/10.1242/jeb.00848 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [27] Tarascio M. J., Ramasamy M., Chopra I. and Leishman J. G., “Flow Visualization of Micro Air Vehicle Scaled Insect-Based Flapping Wings,” Journal of Aircraft, Vol. 42, No. 2, March–April 2005, pp. 385–390. doi:https://doi.org/10.2514/1.6055 JAIRAM 0021-8669 LinkGoogle Scholar

  • [28] Lentink D. and Dickinson M. H., “Rotational Accelerations Stabilize Leading Edge Vortices on Revolving Fly Wings,” Journal of Experimental Biology, Vol. 212, No. 16, April 2009, pp. 2705–2719. doi:https://doi.org/10.1242/jeb.022269 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [29] Bush B. and Baeder J., “Force Production Mechanisms of a Flapping MAV Wing,” American Helicopter Society Aeromechanics Specialist’s Conference, Vols. 1–2, American Helicopter Soc. International, Alexandria, VA, 2008, p. 782, http://toc.proceedings.com/02630webtoc.pdf. Google Scholar

  • [30] Malhan R., “Investigation of Aerodynamics of Flapping Wings for Micro Air Vehicle Applications,” Ph.D. Thesis, Univ. of Maryland, College Park, MD, May 2013. Google Scholar

  • [31] Taylor G. K., Nudds R. L. and Thomas A. L. R., “Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency,” Nature, Vol. 425, No. 6959, Oct. 2003, pp. 707–711. doi:https://doi.org/10.1038/nature02000 CrossrefGoogle Scholar

  • [32] Liu H., Ellington C., Kawachi K., van den Berg C. and Willmott A., “A Computational Fluid Dynamic Study of Hawkmoth Hovering,” Journal of Experimental Biology, Vol. 201, No. 4, Feb. 1998, pp. 461–477. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [33] Sun M. and Tang J., “Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion,” Journal of Experimental Biology, Vol. 205, No. 1, 2002, pp. 55–70. JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [34] Minotti F. O., “Unsteady Two-Dimensional Theory of a Flapping Wing,” Physical Review E: Statistical Physics, Plasma, Fluids, and Related Interdisciplinary Topics, Vol. 66, No. 5, Jan. 2002, Paper 051907. doi:https://doi.org/10.1103/PhysRevE.66.051907 Google Scholar

  • [35] Bush B. and Baeder J., “Computational Investigation of Flapping-Wing Flight,” 37th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2007-4209, June 2007. LinkGoogle Scholar

  • [36] Ramamurti R. and Sandberg W., “Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver,” AIAA Journal, Vol. 39, No. 2, Feb. 2001, pp. 253–260. doi:https://doi.org/10.2514/2.1320 AIAJAH 0001-1452 LinkGoogle Scholar

  • [37] Malhan R. P., Benedict M. and Chopra I., “Experimental Studies to Understand the Hover and Forward Flight Performance of a MAV-Scale Flapping Wing Concept,” Journal of the American Helicopter Society, Vol. 57, No. 2, April 2012, Paper 022002. JHESAK 0002-8711 CrossrefGoogle Scholar

  • [38] Lakshminarayan V. K., Computational Investigation of Micro-Scale Coaxial Rotor Aerodynamics in Hover, Ph.D. Dissertation, Dept. of Aerospace Engineering, Univ. of Maryland, College Park, MD, Jan. 2009. Google Scholar

  • [39] Pulliam T. and Chaussee D., “A Diagonal Form of an Implicit Approximate Factorization Algorithm,” Journal of Computational Physics, Vol. 39, No. 2, Feb. 1981, pp. 347–363. doi:https://doi.org/10.1016/0021-9991(81)90156-X JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [40] Bram V. L., “Towards the Ultimate Conservative Difference Scheme 5. A Second-Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 135, No. 2, June 1997, pp. 229–248. doi:https://doi.org/10.1006/jcph.1997.5704 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [41] Roe P., “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” Journal of Computational Physics, Vol. 135, No. 2, June 1997, pp. 250–258. doi:https://doi.org/10.1006/jcph.1997.5705 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [42] Koren B., “Upwind Schemes, Multigrid and Defect Correction for the Steady Navier–Stokes Equations,” Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics, Vol. 323, Lecture Notes in Physics, Springer–Verlag, Berlin, 1989, pp. 344–348. doi:https://doi.org/10.1007/3-540-51048-6_52 Google Scholar

  • [43] Buelow P. E. O., Schwer D. A. and Feng J. M. C. L., “A Preconditioned Dual-Time, Diagonalized ADI Scheme for Unsteady Computations,” 13th Computational Fluid Dynamics Conference, AIAA Paper  1997-2101, July 1997. LinkGoogle Scholar

  • [44] Pandya S. A., Venkateswaran S. and Pulliam T. H., “Implementation of Preconditioned Dual-Time Procedures in OVERFLOW,” 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2003-0072, Jan. 2003. LinkGoogle Scholar

  • [45] Spalart P. R. and Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” 30th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  1992-0439, Jan. 1992. LinkGoogle Scholar

  • [46] Lee Y., “On Overset Grids Connectivity and Automated Vortex Tracking in Rotorcraft CFD,” Ph.D. Dissertation, Dept. of Aerospace Engineering, Univ. of Maryland, College Park, MD, Jan. 2008. Google Scholar

  • [47] Tropea C, Yarin A. L. and Foss J. F., Springer Handbook of Experimental Fluid Mechanics, Springer–Verlag, Berlin, 2007, pp. 295–296. CrossrefGoogle Scholar

  • [48] Westerweel J., Dabiri D. and Gharib M., “The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings,” Experiments in Fluids, Vol. 23, No. 1, 1997, pp. 20–28. doi:https://doi.org/10.1007/s003480050082 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [49] Scarano F., “Iterative Image Deformation Methods in PIV,” Measurement Science and Technology, Vol. 13, No. 1, Jan. 2002, pp. 1–19. doi:https://doi.org/10.1088/0957-0233/13/1/201 MSTCEP 0957-0233 CrossrefGoogle Scholar

  • [50] Huang H., Dablrl D. and Gharlb M., “On Errors of Digital Particle Image VelocimetryMeasurement Science and Technology, Vol. 8, No. 12, 1997, pp. 1427–1440. doi:https://doi.org/10.1088/0957-0233/8/12/007 MSTCEP 0957-0233 CrossrefGoogle Scholar

  • [51] Raffel M., Willert C. E., Wereley S. and Kompenhans J., Particle Image Velocimetry: A Practical Guide, Springer–Verlag, Berlin, 1998, pp. 117–134. CrossrefGoogle Scholar

  • [52] Graftieaux L., Michard M. and Grosjean N., “Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows,” Measurement Science and Technology, Vol. 12, No. 9, Aug. 2001, pp. 1422–1429. doi:https://doi.org/10.1088/0957-0233/12/9/307 MSTCEP 0957-0233 CrossrefGoogle Scholar

  • [53] Anderson J. D., Fundamentals of Aerodynamics, McGraw–Hill, New York, 2007, pp. 162–164. Google Scholar

  • [54] Da Silva C. B. and Pereira J. C., “Invariants of the Velocity-Gradient, Rate-of-Strain, and Rate-of-Rotation Tensors Across the Turbulent/Nonturbulent Interface in Jets,” Physics of Fluids, Vol. 20, No. 5, May 2008, Paper 055101. doi:https://doi.org/10.1063/1.2912513 CrossrefGoogle Scholar