Skip to main content
Skip to article control options
No AccessFull-Length Paper

Leading-Edge Geometry Effects on the Vortex Formation of a Diamond-Wing Configuration

Published Online:https://doi.org/10.2514/1.C033014

The effects of spanwise-varying leading-edge contours with respect to vortex formation are investigated on a diamond-wing configuration named SAGITTA. At low-speed conditions, three different leading-edge configurations are considered for which the spanwise leading-edge contours can be of a sharp or rounded type. In a combined approach, both numerical computations and experimental investigations are therefore conducted. On the one hand, both steady and unsteady Reynolds-averaged Navier–Stokes equations are applied to compute numerical results for all three different leading-edge configurations. On the other hand, wind-tunnel experiments are performed for the reference configuration to study the overall aerodynamic characteristics. It turns out that the agreement between the numerics and experiment is very good. Depending on the chosen leading-edge contours, the numerical analyses show a different vortex formation on the SAGITTA diamond-wing configuration, which results in diverse flow topologies. Both the flow topologies and the characteristics of the aerodynamic coefficients are discussed in detail for the three analyzed configurations. Due to the 12% relative thickness airfoil, vortex formation takes place only at sharp leading-edge segments, but not for rounded leading-edge contours. Despite diverse flow topologies, however, the resulting effects on global performance regarding lift and pitching-moment characteristics are found to be only small for the regarded configurations.

References

  • [1] Hummel D., “On the Vortex Formation over a Slender Wing at Large Angles of Incidence ,” AGARD Specialists’ Meeting on “High Angle of Attack Aerodynamics,” AGARD 247, Oct. 1978. Google Scholar

  • [2] Breitsamter C., “Turbulente Strömungsstrukturen an Flugzeugkonfigurationen mit Vorderkantenwirbeln,” Ph.D. Dissertation, Technische Univ. München, Herbert Utz Verlag, Munich, 1997 (in German). Google Scholar

  • [3] Hummel D., “Untersuchungen über das Aufplatzen der Wirbel an Schlanken Deltaflügeln,” Zeitschrift für Flugwissenschaften und Weltraumforschung, Vol. 13, No. 5, 1965, pp. 158–168. Google Scholar

  • [4] Lambourne N. C. and Dryer D. W., “The Bursting of Leading–Edge Vortices. Some Observations and Disussions of the Phenomenon,” Aeronautical Research Council, Reports and Memoranda  3282, 1962. Google Scholar

  • [5] Chu J. and Luckring J. M., “Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges,” NASA TM-4645, 1996. Google Scholar

  • [6] Breitsamter C., “Unsteady Flow Phenomena Associated with Leading-Edge Vortices,” Progress in Aerospace Sciences, Vol. 44, No. 1, 2008, pp. 48–65. doi:https://doi.org/10.1016/j.paerosci.2007.10.002 CrossrefGoogle Scholar

  • [7] Gursul I., Gordnier R. and Visbal M., “Unsteady Aerodynamics of Non-Slender Delta Wings,” Progress in Aerospace Sciences, Vol. 41, No. 7, 2005, pp. 515–557. doi:https://doi.org/10.1016/j.paerosci.2005.09.002 CrossrefGoogle Scholar

  • [8] Yayla S., Canpolat C., Sahin B. and Akilli H., “Yaw Angle Effect on Flow Structure Over the Nonslender Diamond Wing,” AIAA Journal, Vol. 48, No. 10, 2010, pp. 2457–2461. doi:https://doi.org/10.2514/1.J050380 LinkGoogle Scholar

  • [9] Luckring J. M., “A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4820, June–July 2010. LinkGoogle Scholar

  • [10] Schütte A., Hummel D. and Hitzel S. M., “Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1638–1651. doi:https://doi.org/10.2514/1.C031386 LinkGoogle Scholar

  • [11] Furman A. and Breitsamter C., “Turbulent and Unsteady Flow Characteristics of Delta Wing Vortex Systems,” Aerospace Science and Technology, Vol. 24, No. 1, 2013, pp. 32–44. doi:https://doi.org/10.1016/j.ast.2012.08.007 CrossrefGoogle Scholar

  • [12] Fritz W., “Numerical Simulation of the Peculiar Subsonic Flow-Field About the VFE-2 Delta Wing with Rounded Leading Edge,” Aerospace Science and Technology, Vol. 24, No. 1, 2013, pp. 45–55. doi:https://doi.org/10.1016/j.ast.2012.02.006 CrossrefGoogle Scholar

  • [13] Schütte A. and Lüdeke H., “Numerical Investigations on the VFE-2 65-Degree Rounded Leading Edge Delta Wing Using the Unstructured DLR TAU-Code,” Aerospace Science and Technology, Vol. 24, No. 1, 2013, pp. 56–65. doi:https://doi.org/10.1016/j.ast.2012.03.002 CrossrefGoogle Scholar

  • [14] Hummel D., “Effects of Boundary Layer Formation on the Vortical Flow above Slender Delta Wings,” RTO AVT Specialists’ Meeting on “Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation,” RTO-MP-AVT-111, NATO Research and Technology Organization, Prague, Oct. 2004. Google Scholar

  • [15] Seifert J., “SAGITTA—Nationale Forschungskooperation für Fortschrittliche UAV-Technologien im Rahmen der Open Innovation Initiative von Cassidian,” 61st Deutscher Luft- und Raumfahrtkongress, Deutscher Luft- und Raumfahrtkongress 1352, Berlin, Sept. 2012. Google Scholar

  • [16] Hövelmann A. and Breitsamter C., “Leading-Edge Geometry Effects on the Vortex System Formation of a Diamond Wing Configuration,” 31st AIAA Applied Aerodynamics Conference, AIAA Paper  2013-3187, June 2013. LinkGoogle Scholar

  • [17] Hövelmann A. and Breitsamter C., “Experimental Investigations on Vortex Flow Phenomena of a Diamond Wing Configuration,” 29th Congress of the International Council of the Aeronautical Sciences, International Council of the Aeronautical Sciences 4.1.1, St. Petersburg, Russia, Sept. 2014. Google Scholar

  • [18] Hövelmann A. and Breitsamter C., “Aerodynamic Characteristics of the SAGITTA Diamond Wing Demonstrator Configuration,” 61st Deutscher Luft- und Raumfahrtkongress, Deutscher Luft- und Raumfahrtkongress 281220, Berlin, Germany, Sept. 2012. Google Scholar

  • [19] Gerhold T., “Overview of the Hybrid RANS Code TAU,” MEGAFLOW—Numerical Flow Simulation for Aircraft Design, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 89, Springer-Verlag, New York, 2005, pp. 81–92. CrossrefGoogle Scholar

  • [20] Schwamborn D., Gerhold T. and Heinrich R., “The DLR TAU-Code: Recent Applications in Research and Industry,” 4th European Conference on Computational Fluid Dynamics, European Community on Computational Methods in Applied Sciences CFD  2006-619, Egmond aan Zee, The Netherlands, Sept. 2006. Google Scholar

  • [21] Wang G., Schwöppe A. and Heinrich R., “Comparison and Evaluation of Cell-Centered and Cell-Vertex Discretization in the Unstructured TAU-Code for Turbulent Viscous Flows,” 5th European Conference on Computational Fluid Dynamics, European Community on Computational Methods in Applied Sciences CFD  2010-1251, Lisbon, June 2010. Google Scholar

  • [22] Fritz W., Davis M. B., Karman S. L. and Michal T., “Reynolds-Averaged Navier–Stokes Solutions for the CAWAPI F-16XL Using Different Hybrid Grids,” Journal of Aircraft, Vol. 46, No. 2, 2009, pp. 409–422. doi:https://doi.org/10.2514/1.35106 LinkGoogle Scholar

  • [23] Rizzi A., Jirásek A., Lamar J. E., Crippa S., Badcock K. J. and Boelens O. J., “Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions,” Journal of Aircraft, Vol. 46, No. 2, 2009, pp. 423–441. doi:https://doi.org/10.2514/1.35698 LinkGoogle Scholar

  • [24] Schütte A., Boelens O. J., Oehlke M., Jirásek A. and Löser T., “Prediction of the Flow Around the X-31 Aircraft Using Three Different CFD Methods,” Aerospace Science and Technology, Vol. 20, No. 1, 2012, pp. 21–37. doi:https://doi.org/10.1016/j.ast.2011.07.014 CrossrefGoogle Scholar

  • [25] Cummings R. M. and Schütte A., “Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1542–1557. doi:https://doi.org/10.2514/1.C031430 LinkGoogle Scholar

  • [26] Schütte A., Cummings R. M. and Löser T., “An Integrated Computational/Experimental Approach to X-31 Stability and Control Estimation,” Aerospace Science and Technology, Vol. 20, No. 1, 2012, pp. 2–11. doi:https://doi.org/10.1016/j.ast.2011.10.010 CrossrefGoogle Scholar

  • [27] Jameson A., Schmidt W. and Turkel E., “Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes,” 14th AIAA Fluid and Plasma Dynamics Conference, AIAA Paper  1981-1259, June 1981. LinkGoogle Scholar

  • [28] Jameson A. and Yoon S., “Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations,” AIAA Journal, Vol. 25, No. 7, 1987, pp. 929–935. doi:https://doi.org/10.2514/3.9724 LinkGoogle Scholar

  • [29] Jameson A. and Yoon S., “Multigrid Solution of the Euler Equations Using Implicit Schemes,” AIAA Journal, Vol. 24, No. 11, 1986, pp. 1737–1743. doi:https://doi.org/10.2514/3.9518 LinkGoogle Scholar

  • [30] Spalart P. R. and Allmaras S. R., “One-Equation Turbulence Model for Aerodynamic Flow,” 30th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  1992-0439, Jan. 1992. LinkGoogle Scholar