Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessFull-Length Paper

Improved Rotor Hover Predictions Using Advanced Turbulence Modeling

Published Online:https://doi.org/10.2514/1.C033512

The conventional helicopter rotor S-76 hover performance is numerically investigated using an unstructured grid Navier–Stokes computational fluid dynamics solver. Three S-76 rotor tip configurations, including rectangular straight tip, swept tapered tip, and swept tapered tip with anhedral are investigated, and the results are validated with the experimental data. The rotor figure of merit is predicted over a range of blade collective angles from 4 through 10 deg using a mesh deformation method. A local correlation-based transition model and a stall delay model are investigated with both Spalart–Allmaras’s turbulence model and Menter’s shear stress transport turbulence model to capture complex viscous flow phenomena. The numerical investigations indicate that sufficient numerical accuracy and correct turbulence modeling are both essential for capturing the hovering rotor physics and predicting the rotor performance for the entire collective range.

References

  • [1] Balch D. T. and Lombardi J., “Experimental Study of Main Rotor Tip Geometry and Tail Rotor Interactions in Hover. Vol. I–Text and Figures,” Vol. 1, NASA  CR177336, NASA Ames Research Center, Moffett Field, CA, Feb. 1985. Google Scholar

  • [2] Balch D. T. and Lombardi J., “Experimental Study of Main Rotor Tip Geometry and Tail Rotor Interactions in Hover. Vol. II-Run Log and Tabulated Data,” Vol. 2, NASA  CR177336, NASA Ames Research Center, Moffett Field, CA, Feb. 1985. Google Scholar

  • [3] Acree C. W., “JVX Proprotor Performance Calculations and Comparisons with Hover and Airplane-Mode Test Data,” NASA TM-2009-215380, Ames Research Center, Moffett Field, CA, April 2009. Google Scholar

  • [4] Sheng C., “Predictions of JVX Rotor Performance in Hover and Airplane Mode Using High-Fidelity Unstructured Grid CFD Solver,” Proceedings of the American Helicopter Society 70th Annual Forum, American Helicopter Society International, Inc., Alexandria, VA, May 2014. Google Scholar

  • [5] Hariharan N., Egolf T. A. and Sankar L. N., “Simulation of Rotor in Hover: Current State and Challenges,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0041, Jan. 2014. LinkGoogle Scholar

  • [6] Hariharan N., Egolf T. A., Narducci R. and Sankar L. N., “Helicopter Rotor Aerodynamic Modeling in Hover: AIAA Standardized Hover Evaluations,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1242, Jan. 2015. LinkGoogle Scholar

  • [7] Baeder J. and Medida S., “OVERTURNS Simulation of S-76 Rotor in Hover,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0045, Jan. 2014. LinkGoogle Scholar

  • [8] Narducci P. R., “OVERFLOW Simulation of Rotor in Hover: The Boeing Company,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0208, Jan. 2014. LinkGoogle Scholar

  • [9] Narducci R., “Hover Performance Assessment of Several Tip Shapes Using OVERFLOW,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1243, Jan. 2015. LinkGoogle Scholar

  • [10] Garcia A. J. and Barakos G. N., “Hover Predictions on the S-76 Rotor Using HMB2,” AIAA SciTech Conferences, AIAA Paper  2015-1712, Jan. 2015. Google Scholar

  • [11] Liu Z., Kim J., Sankar L., Hariharan N. and Egolf T. A., “High Order Evaluation of S-76 in Hover,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1714, Jan. 2015. Google Scholar

  • [12] Sheng C., Zhao Q. and Wang J., “S-76 Rotor Hover Prediction Using U2NCLE Solver,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0044, Jan. 2014. LinkGoogle Scholar

  • [13] Sheng C., Wang J. and Zhao Q., “S-76 Rotor Hover Predictions Using Advanced Turbulence Models,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1715, Jan. 2015. LinkGoogle Scholar

  • [14] Jung M. K., Hwang J. Y. and Kwon O. J., “Assessment of Rotor Aerodynamic Performances in Hover Using an Unstructured Mixed Mesh Method,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0042, Jan. 2014. LinkGoogle Scholar

  • [15] Jain R. K. and Potsdam M. A., “Hover Predictions on the Sikorsky S-76 Rotor Using Helios,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0207, Jan. 2014. LinkGoogle Scholar

  • [16] Tadghighi M. H., “Helios Simulation of Rotors in Hover: The Boeing Company,” AIAA SciTech 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0209, Jan. 2014. LinkGoogle Scholar

  • [17] Jain R., “Hover Predictions for the S-76 Rotor with Tip Shape Variation Using CREATE-AV Helios,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1244, Jan. 2015. LinkGoogle Scholar

  • [18] Hwang J. Y., Choi J. H. and Kwon O. J., “Assessment of S-76 Rotor Aerodynamic Performance in Hover on Unstructured Mixed Meshes,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1246, Jan. 2015. LinkGoogle Scholar

  • [19] Kim J. W., Sankar L. N., Marpu R., Egolf T. A. and Hariharan N., “Assessment of Planform Effects on Rotor Hover Performance,” AIAA SciTech 53rd Aerospace Sciences Meeting, AIAA Paper  2015-1716, Jan. 2015. Google Scholar

  • [20] Spalart P. R. and Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA 30th Aerospace Sciences Meeting & Exhibit, AIAA Paper  1992-0439, Jan. 1992. Google Scholar

  • [21] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, Aug. 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 LinkGoogle Scholar

  • [22] Langtry R. B. and Menter F. R., “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal, Vol. 47, No. 12, Dec. 2010, pp. 2894–2906. doi:https://doi.org/10.2514/1.42362 LinkGoogle Scholar

  • [23] Medida S. and Baeder J. D., “Application of the Correlation-Based Transition Model to the Spalart-Allmaras Turbulence Model,” 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper  2011-3979, June 2011. Google Scholar

  • [24] Wang J. and Sheng C., “A Comparison of a Local Correlation-Based Transition Model Coupled with SA and SST Turbulence Model,” AIAA SciTech Conferences, AIAA Paper  2015-0587, Jan. 2015. LinkGoogle Scholar

  • [25] Sheng C., Zhao Q. and Hill M., “Investigations of XV-15 Rotor Hover Performance and Flow Field Using U2NCLE and HELIOS Codes,” AIAA SciTech 54th Aerospace Sciences Meeting, AIAA Paper  2016-0303, Jan. 2016. LinkGoogle Scholar

  • [26] Sheng C. and Narramore J., “Computational Simulation and Analysis of Bell Boeing Quad Tiltrotor Aero Interaction,” Journal of the American Helicopter Society, Vol. 27, No. 4, Oct. 2009, pp. 1–15. Google Scholar

  • [27] Sheng C., “A Preconditioned Method for Rotating Flows at Arbitrary Mach Number,” Modeling and Simulation in Engineering, Vol. 2011, Jan. 2011, Paper 537464. doi:https://doi.org/10.1155/2011/537464 CrossrefGoogle Scholar

  • [28] Roe P., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. CrossrefGoogle Scholar

  • [29] Zhao Q. and Sheng C., “Evaluation of Higher Order Improvement of Unstructured Schemes for Helicopter Rotor Simulations,” 30th AIAA Applied Aerodynamics Conference, AIAA Paper  2012-2901, June 2012. LinkGoogle Scholar

  • [30] Sheng C. and Allen C., “Efficient Mesh Deformation Using Radial Basis Functions on Unstructured Meshes,” AIAA Journal, Vol. 51, No. 3, 2013, pp. 707–720. doi:https://doi.org/10.2514/1.J052126 LinkGoogle Scholar

  • [31] Rendall T. and Allen C., “Efficient Mesh Motion Using Radial Basis Functions with Data Reduction Algorithms,” Journal of Computational Physics, Vol. 228, No. 17, 2009, pp. 6231–6249. doi:https://doi.org/10.1016/j.jcp.2009.05.013 CrossrefGoogle Scholar

  • [32] Sheng C., Ickes J., Wang J. and Zhao Q., “CFD/CSD Coupled Simulations for Helicopter Rotors in Forward and Maneuvering Flight,” 31st AIAA Applied Aerodynamics Conference, AIAA Paper  2013-2792, June 2013. LinkGoogle Scholar

  • [33] Smith A. M. O. and Gamberoni N., “Transition, Pressure Gradient and Stability Theory,” Douglas Aircraft Co. Rept.  ES26388, El Segundo, CA, 1956. Google Scholar

  • [34] Stock H. W. and Haase W., “Navier–Stokes Airfoil Computations with eN Transition Prediction Including Transitional Flow Regions,” AIAA Journal, Vol. 38, No. 11, 2000, pp. 2059–2066. doi:https://doi.org/10.2514/2.893 LinkGoogle Scholar

  • [35] Robinson D. F. and Hassan H. A., “Further Development of the kζ (Entropy) Turbulence Closure Model,” AIAA Journal, Vol. 36, No. 10, Oct. 1988, pp. 1825–1833. doi:https://doi.org/10.2514/2.298 LinkGoogle Scholar

  • [36] Wu X. and Durbin P. A., “Evidence of Longitudinal Vortices Evolved from Distorted Wakes in a Turbine Passage,” Journal of Fluid Mechanics, Vol. 446, Nov. 2001, pp. 199–228. CrossrefGoogle Scholar

  • [37] Chaderjian N. M., “Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement,” 7th International Conference on Computational Fluid Dynamics, ICCFD7-3506, July 2012. Google Scholar

  • [38] Leishman J. G., Principles of Helicopter Aerodynamics, 2nd ed., Cambridge Aerospace Series, Cambridge Univ. Press, New York, April 2006, pp. 292–295. Google Scholar