Skip to main content
Skip to article control options
No AccessComputational and Experimental Aerodynamics and Stability & Control for an Agile UAV

Numerical Assessment of Leading- and Trailing-Edge Control on a Swept Lambda Wing

Published Online:https://doi.org/10.2514/1.C033820

The next generation of agile unmanned combat aerial vehicles has put focus on the stability and control of low observable platforms. Without the traditional fin for yaw control combined with delta wings, a challenging task has been presented to the research community. The NATO research group AVT-201 was formed to meet this challenge and build on previous knowledge gained on the complex vortical flow of rounded leading-edge delta wings. This paper presents two numerical studies made by the Swedish Defence Research Agency (FOI) and the French Aerospace Lab (ONERA) on traditional trailing-edge control and a more unconventional type of leading-edge flap control. Results from the FOI-developed flow solver Edge, using trailing-edge control, on a low observable 53 deg swept lambda wing model are compared to experimental data. The effect of leading-edge control is investigated by ONERA with a slightly smaller-scaled model, using the in-house code elsA, and validated by experimental data. Additional static and dynamic derivatives are evaluated by ONERA for the clean configuration.

References

  • [1] Drougge G., “The International Vortex Flow Experiment for Computer Code Validation,” ICAS-Proceedings, Vol. 1, 1988, pp. 35–41. Google Scholar

  • [2] Elsenaar A., Hjelmberg L., Bütefisch K.-A. and Bannink W. J., “The International Vortex Flow Experiment,” AGARD CP437, Vol. 1, 1988, pp. 9-1–9-23. Google Scholar

  • [3] Hoeijmakers H. W. M., “Modelling and Numerical Simulation of Vortex Flow in Aerodynamics,” AGARD CP-494, 1991, pp. 1-1–1-46. Google Scholar

  • [4] Hummel D., “The Second International Vortex Flow Experiment (VFE-2): Objectives and First Results,” 2nd International Symposium on Integrating CFD and Experiments in Aerodynamics, Cranfield Univ., U.K., Sept. 2005; also Journal of Aerospace Engineering, Vol. 220, No. 6, 2006, pp. 559–568. Google Scholar

  • [5] Hummel D., “Review of the Second International Vortex Flow Experiment (VFE-2),” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2008-0377, Jan. 2008. LinkGoogle Scholar

  • [6] Schütte A. and Lüdeke H., “Numerical Investigations on the VFE 2 65-Degree Rounded Leading Edge Delta Wing Using the Unstructured DLR-TAU-Code,” AIAA Paper  2008-0398, 2008. LinkGoogle Scholar

  • [7] Lamar J. and Hummel D., “Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft,” RTO/AVT, RTO-TR-AVT-113, Final Rept., 2009. Google Scholar

  • [8] Schütte A., Cummings R. M., Löser T. and Vicroy D. D., “Integrated Computational/Experimental Approach to UCAV and Delta-Canard Configurations Regarding Stability and Control,” 4th Symposium on Integrating CFD and Experiments in Aerodynamics, von Kármán Inst., Rhode-Saint-Genèse, Belgium, Sept. 2009. Google Scholar

  • [9] Schütte A., Hummel D. and Hitzel S., “Numerical and Experimental Analyses of the Vortical Flow Around the SACCON Configuration,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4690, June–July 2010. LinkGoogle Scholar

  • [10] Cummings R. M. and Schütte A., “Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1542–1557. LinkGoogle Scholar

  • [11] Löser T., “SACCON Static Wind Tunnel Tests at DNW-NWB and 14×22 NASA LaRC,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4393, June–July 2010. LinkGoogle Scholar

  • [12] Vicroy D., “SACCON Dynamic Wind Tunnel Tests at DNW-NWB and 14×22 NASA LaRC,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4394, June–July 2010. LinkGoogle Scholar

  • [13] Gillot A., “Static and Dynamic SACCON PIV Tests-Part I: Forward Flowfield,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4395, June–July 2010. LinkGoogle Scholar

  • [14] Konrath R., “Static and Dynamic SACCON PIV Tests-Part II: Aft Flow Field,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4396, June–July 2010. LinkGoogle Scholar

  • [15] Tormalm M. and Schmidt S., “Computational Study of Static and Dynamic Vortical Flow over the Delta Wing SACCON Configuration Using the FOI Flow Solver Edge,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4561, June–July 2010. LinkGoogle Scholar

  • [16] Frink N. T., Tormalm M. and Schmidt S., “Unstructured CFD Aerodynamic Analysis of a Generic UCAV Configuration,” RTO Meeting Proceedings, AC/323(AVT-189)TP/414, RTO-MP-AVT-189, Paper 25, Specialists’ Meeting, Portsdown, U.K., Oct. 2011. Google Scholar

  • [17] Frink N. T., Tormalm M. and Schmidt S., “Three Unstructured Computational Fluid Dynamics Studies on Generic Uninhabited Combat Air Vehicle,” Journal of Aircraft, Vol. 49, No 6, 2012, pp.1619–1637. LinkGoogle Scholar

  • [18] Morgand S., “Caractérisation et Contrôle de l’Écoulement Autour d’un Drone Générique,” Ph.D. Thesis, UPMC Paris VI, 2013. Google Scholar

  • [19] Eliasson P., “Edge, a Navier–Stokes Solver for Unstructured Grids,” Proceedings of Finite Volumes for Complex Applications III, 2002, pp. 527–534. Google Scholar

  • [20] Wallin S. and Johansson A. V., “An Explicit Algebraic Reynolds Stress Model of Incompressible and Compressible Flows,” Journal of Fluid Mechanics, Vol. 403, Jan. 2000, pp. 89–132. CrossrefGoogle Scholar

  • [21] Hellsten A., “New Advanced k-ω Turbulence Model for High-Lift Aerodynamics,” AIAA Journal, Vol. 43, No. 9, 2005, pp. 1857–1869. LinkGoogle Scholar

  • [22] Cambier L., Heib S. and Plot S., “The Onera elsA CFD Software: Input from Research and Feedback from Industry,” Mechanics and Industry, 2013. Google Scholar

  • [23] Le Roy J.-F. and Morgand S., “SACCON CFD Static and Dynamic Derivatives Using elsA,” 28th AIAA Applied Aerodynamics Conference, AIAA Paper  2010-4562, 2010. Google Scholar

  • [24] Mialon B. and et al., “Validation of Numerical Prediction of Dynamic Derivatives: The DLR-F12 and the Transcruiser Test Cases,” Progress in Aerospace Sciences, Vol. 47, No. 8, Nov. 2011, pp. 674–694. CrossrefGoogle Scholar

  • [25] Tysell L., “The TRITET Grid Generation System,” Proceedings of the 10th ISGG Conference on Numerical Grid Generation, Forth, Crete, Greece 2007 Society of Grid Generation (ISGG), 2007, pp. 13–24. Google Scholar

  • [26] Gursul I., Gordnier R. and Visbal M., “Unsteady Aerodynamics of Nonslender Delta Wings,” Progress in Aerospace Sciences, Vol. 41, Nov. 2005, pp. 515–557. CrossrefGoogle Scholar

  • [27] Riou J., “Etudes et Contrôle du Décrochage d’Ailes et Gouvernes de Missile en Régime Transsonique,” Ph.D. Thesis, Univ. of Paris XIII, France, 2009. Google Scholar

  • [28] Schütte A., Hummel D. and Hitzel S. M., “Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1638–1651. LinkGoogle Scholar

  • [29] Jirasek A. and Cummings M. R., “SACCON Static and Dynamic Motion Flow Physics Simulations Using COBALT,” 29th AIAA Applied Aerodynamics Conference, AIAA Paper  2011-3965, June 2011. Google Scholar

  • [30] Roosenboom E. W. M., Konrath R., Schröder A., Pallek D., Otter D., Morgand S., Gilliot A., Monnier J. C., Le Roy J. F., Geiler C. and Pruvost J., “Stereoscopic Particle Image Velocimetry Flowfield Investigation of an Unmanned Combat Air Vehicle,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1584–1596. doi:https://doi.org/10.2514/1.C031587. LinkGoogle Scholar

  • [31] Le Roy J.-F., Morgand S. and Farcy D., “Static and Dynamic Derivatives on Generic UCAV Without and with Leading Edge Control,” 32th AIAA Applied Aerodynamics Conference, AIAA Paper  2014-2391, 2014. LinkGoogle Scholar