Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessFull-Length Paper

Computational Investigation of a Full-Scale Proprotor Hover Performance and Flow Transition

Published Online:https://doi.org/10.2514/1.C034015

The full-scale XV-15 proprotor hover performance and flow transition phenomena are numerically investigated using an unsteady Reynolds-averaged Navier–Stokes flow solver. The rotor figure of merit is predicted over a range of blade collective angles, and computed skin frictions on the rotor surface are compared with the wind-tunnel experimental data. A grid resolution study is performed to investigate the impact of the mesh resolution on hover predictions using a baseline mesh and a refined mesh. The Langtry–Menter local correlation-based transition model is used to predict the skin friction and transition onset associated with the XV-15 rotor under the framework of both the Spalart–Allmaras one-equation turbulence model and Menter’s shear-stress transport two-equation model. Computational results show satisfactory predictions for the XV-15 hover performance and transition phenomena and offer an improved understanding of complicated rotor flow physics for the XV-15 proprotor.

References

  • [1] Maisel M. D., Giulianetti D. J. and Dugan D. C., “The History of the XV-15 Tilt Rotor Research Aircraft,” NASA SP-2000-4517, 2000. Google Scholar

  • [2] Advancement of Proprotor Technology: Wind-Tunnel Test Results Task II,” NASA CR-114363, 1971. Google Scholar

  • [3] Felker F. F., Betzina M. D. and Signor D. B., “Performance and Loads Data from a Hover Test of a Full-Scale XV-15 Rotor,” NASA TM-86833, 1985. Google Scholar

  • [4] Light J. S., “Results from an XV-15 Rotor Test in the National Full-Scale Aerodynamics Complex,” Proceedings of the American Helicopter Society 53rd Annual Forum, American Helicopter Soc. International, Inc., Alexandra, Vagina, April 1997. Google Scholar

  • [5] Betzina M. D., “Rotor Performance of an Isolated Full-Scale XV-15 Tiltrotor in Helicopter Mode,” Proceedings of the American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting, American Helicopter Soc. International, Inc., Alexandra, Vagina, Jan. 2002. Google Scholar

  • [6] Wadcock A. J. and Yamauchi G. K., “Skin Friction Measurements on a Full-Scale Tilt Rotor in Hover,” Proceedings of the American Helicopter Society 54th Annual Forum, American Helicopter Soc. International, Inc., Alexandra, Vagina, May 1998. Google Scholar

  • [7] Wadcock A. J., Yamauchi G. K. and Driver D. M., “Skin Friction Measurements on a Hovering Full-Scale Tilt Rotor,” Journal of the American Helicopter Society, Vol. 44, No. 4, 1999, pp. 312–319. doi:https://doi.org/10.4050/JAHS.44.312 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [8] Kaul U. K. and Ahmad J., “Skin Friction Predictions on a Hovering Tilt-Rotor Blade,” Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1726–1738. doi:https://doi.org/10.2514/1.C031401 LinkGoogle Scholar

  • [9] Nichols R., Tramel R. and Buning P., “Solver and Turbulence Model Upgrades to OVERFLOW2 for Unsteady and High-Speed Flow Applications,” 25th Applied Aerodynamics Conference, AIAA Paper  2006-2824, June 2006. LinkGoogle Scholar

  • [10] Spalart P. R. and Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” 30th Aerospace Sciences Meeting & Exhibit, AIAA Paper  1992-0439, Jan. 1992. LinkGoogle Scholar

  • [11] Kaul U. K., “Effect of Inflow Boundary Conditions on Hovering Tilt-Rotor Flows,” Proceedings of the 7th International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, July 2012. Google Scholar

  • [12] Spalart P. R., “Detached-Eddy Simulation,” Annual Review of Fluid Mechanics, Vol. 41, Jan. 2009, pp. 181–202. doi:https://doi.org/10.1146/annurev.fluid.010908.165130 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [13] Yoon S., Pulliam T. H. and Chaderjian N. M., “Simulations of XV-15 Rotor Flows in Hover Using OVERFLOW,” Proceedings of the 5th Decennial AHS Aeromechanics Specialists’ Conference, San Francisco, Jan. 2014. Google Scholar

  • [14] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, Aug. 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [15] Zhao M., Xiao Z. and Fu S., “Predictions of Transition on a Hovering Tilt-Rotor Blade,” Journal of Aircraft, Vol. 51, No. 6, 2014, pp. 1904–1913. doi:https://doi.org/10.2514/1.C032570 LinkGoogle Scholar

  • [16] Sheng C., Zhao Q. and Hill M., “Investigations of XV-15 Rotor Performance and Flow Field Using U2NCLE and HELIOS Codes,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper  2016-0303, Jan. 2016. LinkGoogle Scholar

  • [17] Sheng C., “A Preconditioned Method for Rotating Flows at Arbitrary Mach Number,” Modeling and Simulation in Engineering, Vol. 2011, Jan. 2011, Paper 537464. doi:https://doi.org/10.1155/2011/537464 Google Scholar

  • [18] Wissink A. M., Sankaran V., Jayaraman B., Datta A., Sitaraman J., Potsdam M., Kamkar S., Mavriplis D., Yang Z., Jain R., Lim J. and Strawn R., “Capability Enhancements in Version 3 of the Helios High-Fidelity Rotorcraft Simulation Code,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper  2012-0713, Jan. 2012. LinkGoogle Scholar

  • [19] Langtry R. B. and Menter F. R., “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal, Vol. 47, No. 12, 2009, pp. 2894–2906. doi:https://doi.org/10.2514/1.42362 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Wang J. and Sheng C., “A Comparison of a Local Correlation-Based Transition Model Coupled with SA and SST Turbulence Models,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper  2015-0587, Jan. 2015. LinkGoogle Scholar

  • [21] Hariharan N., Egolf T. A. and Sankar L. N., “Simulation of Rotor in Hover: Current State and Challenges,” 52nd Aerospace Sciences Meeting, AIAA Paper  2014-0041, Jan. 2014. LinkGoogle Scholar

  • [22] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. doi:https://doi.org/10.1016/0021-9991(81)90128-5 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [23] Zhao Q. and Sheng C., “Evaluation of Higher Order Improvement of Unstructured Schemes for Helicopter Rotor Simulations,” 30th AIAA Applied Aerodynamics Conference, AIAA Paper  2012-2901, June 2012. LinkGoogle Scholar

  • [24] Hyams D., Sreenivas K., Sheng C., Briley W., Marcum D. and Whitfield D., “An Investigation of Parallel Implicit Solution Algorithms for Incompressible Flows on Unstructured Topologies,” 38th AIAA Aerospace Sciences Meeting, AIAA Paper  2000-0271, Jan. 2000. LinkGoogle Scholar

  • [25] Sheng C. and Allen C. B., “Efficient Mesh Deformation Using Radial Basis Functions on Unstructured Grids,” AIAA Journal, Vol. 51, No. 3, March 2013, pp. 707–720. doi:https://doi.org/10.2514/1.J052126 AIAJAH 0001-1452 LinkGoogle Scholar

  • [26] Rendall T. and Allen C., “Efficient Mesh Motion Using Radial Basis Functions with Data Reduction Algorithms,” Journal of Computational Physics, Vol. 228, No. 17, 2009, pp. 6231–6249. doi:https://doi.org/10.1016/j.jcp.2009.05.013 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [27] Sheng C., Advances in Transitional Flow Modeling: Applications to Helicopter Rotors, 1st ed., Springer Nature, Springer International Publ., Switzerland, 2017, pp. 3–4. CrossrefGoogle Scholar

  • [28] Medida S. and Baeder J. D., “Application of the Correlation-Based γRe¯θt Transition Model to the Spalart–Allmaras Turbulence Model,” 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper  2011-3979, June 2011. LinkGoogle Scholar

  • [29] Wang J. and Sheng C., “Validations of a Local Correlation-Based Transition Model Using an Unstructured Grid CFD Solver,” 7th AIAA Theoretical Fluid Mechanics Conference, AIAA Paper  2014-2211, June 2014. LinkGoogle Scholar

  • [30] Sheng C., “Predictions of JVX Rotor Performance in Hover and Airplane Mode Using High-Fidelity Unstructured Grid CFD Solver,” Proceedings of the American Helicopter Society 70th Annual Forum, Montreal, May 2014. Google Scholar

  • [31] Sheng C., Wang J. and Zhao Q., “Improved Rotor Hover Predictions Using Advanced Turbulence Modeling,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1549–1560. doi:https://doi.org/10.2514/1.C033512 LinkGoogle Scholar