Skip to main content
Skip to article control options
No AccessFull-Length Paper

Investigations of Helicopter Wake Flow Including Rotor-Head Motion

Published Online:https://doi.org/10.2514/1.C034689

The present paper emphasizes on the characteristics of the wake flowfield emanating from a helicopter fuselage and rotor head, including cyclic and collective pitch motion. Predicting the convection of the coherent vortical flow structures generated by the fuselage as well as the rotor head is a difficult goal by the application of numerical methods. Furthermore, the accurate determination of the wake flowfield requires the detailed knowledge of the origin of the associated coherent structures. Therefore, numerical and experimental investigations have been conducted on a twin-engine light utility helicopter. The wind-tunnel model includes a fuselage and a rotating five-bladed rotor head. To obtain the wake flowfield, stereoscopic particle image velocimetry is applied. The numerical investigations are performed with a commercial flow solver. The flow solver is based on the unsteady Reynolds-averaged Navier–Stokes equations. Turbulence modeling is performed with the scale-adaptive simulation model. The motion of the rotor head is covered by the moving and deforming mesh methods. The wake-flow velocity distribution obtained by the experimental data and the numerical results shows a good agreement and allows a detailed analysis of the dominant vortical flow structures propagating downstream.

References

  • [1] Steijl R. and Barakos G. N., “Computational Study of Helicopter Rotor–Fuselage Aerodynamic Interaction,” AIAA Journal, Vol. 47, No. 9, 2009, pp. 2143–2157. doi:https://doi.org/10.2514/1.41287 AIAJAH 0001-1452 LinkGoogle Scholar

  • [2] Grawunder M., Reß R. and Breitsamter C., “Optimized Skid-Landing-Gears for Twin-Engine-Light-Utility Helicopter,” 39th European Rotorcraft Forum 2013, 2013. Google Scholar

  • [3] Grawunder M., Reß R. and Breitsamter C., “Helicopter Aft-Body Drag Reduction by Passive Flow Control,” 40th European Rotorcraft Forum 2014, 2014. Google Scholar

  • [4] Grawunder M., Reß R., Stein V., Breitsamter C. and Adams N. A., “Flow Simulation of a Five Bladed Rotor Head,” New Results in Numerical and Experimental Fluid Mechanics IX, Springer, Cham, Switzerland, 2014, pp. 235–243. doi:https://doi.org/10.1007/978-3-319-03158-3_24 CrossrefGoogle Scholar

  • [5] Xu L. and Weng P., “High Order Accurate and Low Dissipation Method for Unsteady Compressible Viscous Flow Computation on Helicopter Rotor in Forward Flight,” Journal of Computational Physics, Vol. 258, Feb. 2014, pp. 470–488. doi:https://doi.org/10.1016/j.jcp.2013.10.033 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [6] Reich D., Shenoy R., Smith M. and Schmitz S., “A Review of 60 Years of Rotor Hub Drag and Wake Physics: 1954–2014,” Journal of the American Helicopter Society, Vol. 61, No. 2, 2016, pp. 1–17. doi:https://doi.org/10.4050/JAHS.61.022007 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [7] Reich D. B., Elbing B. R., Berezin C. R. and Schmitz S., “Water Tunnel Flow Diagnostics of Wake Structures Downstream of a Model Helicopter Rotor Hub,” Journal of the American Helicopter Society, Vol. 59, No. 3, 2014, pp. 1–12. doi:https://doi.org/10.4050/JAHS.59.032001 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [8] Schmitz S., Reich D., Smith M. J. and Centolanza L. R., “First Rotor Hub Flow Prediction Workshop Experimental Data Campaigns and Computational Analyses,” Annual Forum Proceedings–AHS International, 2017, pp. 461–476. Google Scholar

  • [9] Coder J. G. and Foster N. F., “Structured, Overset Simulations for the 1st Rotor Hub Flow Workshop,” Annual Forum Proceedings–AHS International, 2017, pp. 451–460. Google Scholar

  • [10] Schäferlein U., Keßler M. and Krämer E., “Aeroelastic Simulation of the Tail Shake Phenomenon,” 43rd European Rotorcraft Forum 2017, 2017. Google Scholar

  • [11] Steijl R., Barakos G. and Badcock K., “A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight,” International Journal for Numerical Methods in Fluids, Vol. 51, No. 8, 2006, pp. 819–847. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [12] Renzoni R., D’Alascio A., Kroll N., Peshkin N., Hounjet M., Boniface J.-C., Vigevano L., Morino L., Allen C. B., Badcock K. J., Mottura L., Scholl M. and Kokkalis E., “EROS—A Common European Euler Code for the Analysis of the Helicopter Rotor Flowfield,” Progress in Aerospace Sciences, Vol. 36, Nos. 5–6, 2000, pp. 437–485. doi:https://doi.org/10.1016/S0376-0421(00)00006-3 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [13] Pahlke K. and van der Wall B. G., “Chimera Simulations of Multibladed Rotors in High-Speed Forward Flight with Weak Fluid-Structure Coupling,” 29th European Rotorcraft Forum, 2003. Google Scholar

  • [14] Pomin H. and Wagner S., “Navier–Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight,” Journal of Aircraft, Vol. 39, No. 5, 2002, pp. 813–821. doi:https://doi.org/10.2514/2.3001 LinkGoogle Scholar

  • [15] Pomin H. and Wagner S., “Aeroelastic Analysis of Helicopter Rotor Blades on Deformable Chimera Grids,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 577–584. doi:https://doi.org/10.2514/1.11484 LinkGoogle Scholar

  • [16] Potsdam M., Yeo H. and Johnson W., “Rotor Airloads Prediction Using Loose Aerodynamic/Structural Coupling,” Journal of Aircraft, Vol. 43, No. 3, 2006, pp. 732–742. doi:https://doi.org/10.2514/1.14006 LinkGoogle Scholar

  • [17] Dietz M., Keßler M., Krämer E. and Wagner S., “Tip Vortex Conservation on a Helicopter Main Rotor Using Vortex-Adapted Chimera Grids,” AIAA Journal, Vol. 45, No. 8, 2007, pp. 2062–2074. doi:https://doi.org/10.2514/1.28643 AIAJAH 0001-1452 LinkGoogle Scholar

  • [18] Grawunder M., Reß R., Stein V., Breitsamter C. and Adams N. A., “Validation of a Flow Simulation for a Helicopter Fuselage Including a Rotating Rotor Head,” New Results in Numerical and Experimental Fluid Mechanics X, Springer, Cham, Switzerland, 2016, pp. 303–313. doi:https://doi.org/10.1007/978-3-319-27279-5_27 CrossrefGoogle Scholar

  • [19] Servera G., Beaumier P. and Costes M., “A Weak Coupling Method Between the Dynamics HOST and the 3D Unsteady Euler Code Waves,” Aerospace Science and Technology, Vol. 5, No. 6, 2001, pp. 397–408. doi:https://doi.org/10.1016/S1270-9638(01)01120-8 CrossrefGoogle Scholar

  • [20] Park Y. and Kwon O., “Simulation of Unsteady Rotor Flow Field Using Unstructured Adaptive Sliding Meshes,” Journal of the American Helicopter Society, Vol. 49, No. 4, 2004, pp. 391–400. doi:https://doi.org/10.4050/JAHS.49.391 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [21] Dehaeze F. and Barakos G. N., “Mesh Deformation Methods for Rotor Flows,” Journal of Aircraft, Vol. 49, No. 1, 2012, pp. 82–92. doi:https://doi.org/10.2514/1.C031251 LinkGoogle Scholar

  • [22] ANSYS, “ANSYS Help System,” ANSYS Fluent, Release 17.1, 2014. Google Scholar

  • [23] Menter F. and Egorov Y., “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description,” Journal Flow Turbulence and Combustion, Vol. 85, No. 1, 2010, pp. 113–138. doi:https://doi.org/10.1007/s10494-010-9264-5 CrossrefGoogle Scholar

  • [24] Egorov Y., Menter F. R., Lechner R. and Cokljat D., “The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows,” Flow Turbulence Combustion, Vol. 85, No. 1, 2010, pp. 139–165. doi:https://doi.org/10.1007/s10494-010-9265-4 CrossrefGoogle Scholar

  • [25] Stuhlpfarrer M., Kümmel A. and Breitsamter C., “Numerical and Experimental Investigations of Twin-Engine-Light Utility Helicopter Wake Flow,” DLRK, 2015. Google Scholar

  • [26] Stuhlpfarrer M., Kümmel A. and Breitsamter C., “Numerical and Experimental Investigations of Twin-Engine-Light Utility Helicopter Wake Flow,” Proceedings of the 41st European Rotorcraft Forum, Paper  ERF2015_0043, 2015. Google Scholar

  • [27] Grawunder M., Reß R. and Breitsamter C., “Thermographic Transition Detection for Low-Speed Wind-Tunnel Experiments,” AIAA Journal, Vol. 54, No. 6, 2016, pp. 2012–2016. doi:https://doi.org/10.2514/1.J054490 AIAJAH 0001-1452 LinkGoogle Scholar

  • [28] Bebesel M., D’Alascio A., Schneider S., Guenther S., Vogel F., Wehle C. and Schimke D., “Bluecopter Demonstrator—An Approach of Eco-Efficient Helicopter Design,” 41st European Rotorcraft Forum, Paper  ERF2015_0005, 2015. Google Scholar

  • [29] Zhang Q., Garavello A., D’Alascio A. and Schimke D., “Advanced CFD-Based Optimization Methods Applied to the Industrial Design Process of Airframe Components at Airbus Helicopters,” American Helicopter Society 70th Annual Forum, 2014. Google Scholar

  • [30] Coder J. G., Cross P. A. and Smith M. J., “Turbulence Modeling Strategies for Rotor Hub Flows,” AHS International 73rd Annual Forum & Technology Display, 2017. Google Scholar

  • [31] Kowarsch U., Kessler M. and Krämer M., “CFD-Simulation of the Rotor-Head Influence to the Rotor-Fuselage Interaction,” 40th European Rotorcraft Forum, 2014. Google Scholar

  • [32] Foucaut M., Carlier J. and Stanislas M., “PIV Optimization for the Study of the Turbulent Flow Using Spectral Analysis,” Measurement Science and Technology, Vol. 15, No. 6, 2004, pp. 1046–1058. doi:https://doi.org/10.1088/0957-0233/15/6/003 MSTCEP 0957-0233 CrossrefGoogle Scholar