Skip to main content
Skip to article control options
No AccessFull-Length Paper

Unsteady Pylon Loading Caused by Propeller-Slipstream Impingement for Tip-Mounted Propellers

Published Online:

An experimental analysis was performed of the unsteady aerodynamic loading caused by the impingement of a propeller slipstream on a downstream lifting surface. When installed on an aircraft, this unsteady loading results in vibrations that are transmitted to the fuselage and are perceived inside the cabin as structure-borne noise. A pylon-mounted tractor–propeller configuration was installed in a low-speed wind tunnel at Delft University of Technology. Surface-microphone and particle-image-velocimetry measurements were taken to quantify the pressure fluctuations on the pylon and visualize the impingement phenomena. It was confirmed that the propeller tip vortex is the dominant source of pressure fluctuations on the pylon. Along the path of the tip vortex on the pylon, a periodic pressure response occurs with strong harmonics. The amplitude of the pressure fluctuations increases with increasing thrust setting, whereas the unsteady lift coefficient displays a nonmonotonic dependency on the propeller thrust. The lowest integral unsteady loads were obtained for cases with approximately integer ratios between the pylon chord and the wavelength of the perturbation associated with the propeller tip vortices. This implies that structure-borne-noise reductions might be obtained by matching the pylon chord with an integer multiple of the axial separation between the propeller tip vortices.


  • [1] Guynn M. D., Berton J. J., Haller W. J., Hendricks E. S. and Tong M. T., “Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion,” NASA TM-2012-217772, Oct. 2012. Google Scholar

  • [2] Mann S. A. E. and Stuart C. A., “Advanced Propulsion Through the 1990s—An Airframer’s View,” 21st Joint Propulsion Conference, AIAA Paper  1985-1192, July 1985. doi: LinkGoogle Scholar

  • [3] Page M. A., Ivey D. M. and Welge H. R., “Ultra High Bypass Engine Applications to Commercial and Military Aircraft,” SAE Aerospace Technology Conference and Exposition, SAE International Paper  TP-861720, Oct. 1986. doi: CrossrefGoogle Scholar

  • [4] Goldsmith I. M. and Bowles J. V., “Potential Benefits for Propfan Technology on Derivatives of Future Short- to Medium-Range Transport Aircraft,” 16th Joint Propulsion Conference, AIAA Paper  1980-1090, June 1980. doi: LinkGoogle Scholar

  • [5] Goldsmith I. M., “A Study to Define the Research and Technology Requirements for Advanced Turbo/Propfan Transport Aircraft,” NASA CR-166138, Feb. 1981. Google Scholar

  • [6] Block P. J. W., “Experimental Study of the Effects of Installation on Single- and Counter-Rotation Propeller Noise,” NASA TP-2541, April 1986. Google Scholar

  • [7] Block P. J. W. and Gentry G. L., “Directivity and Trends of Noise Generated by a Propeller in a Wake,” NASA TP-2609, Sept. 1986. Google Scholar

  • [8] Sinnige T., Ragni D., Malgoezar A. M. N., Eitelberg G. and Veldhuis L. L. M., “APIAN-INF: An Aerodynamic and Aeroacoustic Investigation of Pylon-Interaction Effects for Pusher Propellers,” CEAS Aeronautical Journal, 2017. doi: CrossrefGoogle Scholar

  • [9] Magliozzi B., Brown P. and Parzych D., “Acoustic Test and Analysis of a Counterrotating Prop-Fan Model,” NASA CR-179590, Oct. 1987. Google Scholar

  • [10] Eret P., Kennedy J., Amoroso F., Castellini P. and Bennett G. J., “Experimental Observations of an Installed-on-Pylon Contra-Rotating Open Rotor with Equal Blade Number in Pusher and Tractor Configuration,” International Journal of Aeroacoustics, Vol. 15, Nos. 1–2, 2016, pp. 228–249. doi: CrossrefGoogle Scholar

  • [11] Veldhuis L. L. M., “Propeller Wing Aerodynamic Interference,” Ph.D. Thesis, Faculty of Aerospace Engineering, Delft Univ. of Technology, Delft, The Netherlands, 2005. Google Scholar

  • [12] Witkowski D. P., Lee A. K. H. and Sullivan J. P., “Aerodynamic Interaction Between Propellers and Wings,” Journal of Aircraft, Vol. 26, No. 9, 1989, pp. 829–836. doi: LinkGoogle Scholar

  • [13] Chiaramonte J. Y., Favier D., Maresca C. and Benneceur S., “Aerodynamic Interaction Study of the Propeller/Wing Under Different Flow Configurations,” Journal of Aircraft, Vol. 33, No. 1, 1996, pp. 46–53. doi: LinkGoogle Scholar

  • [14] Fratello G., Favier D. and Maresca C., “Experimental and Numerical Study of the Propeller/Fixed Wing Interaction,” Journal of Aircraft, Vol. 28, No. 6, 1991, pp. 365–373. doi: LinkGoogle Scholar

  • [15] Ljunggren S., Samuelsson I. and Widing K., “Slipstream-Induced Pressure Fluctuations on a Wing Panel,” Journal of Aircraft, Vol. 26, No. 10, 1989, pp. 914–919. doi: LinkGoogle Scholar

  • [16] Johnston R. T. and Sullivan J. P., “Unsteady Wing Surface Pressures in the Wake of a Propeller,” Journal of Aircraft, Vol. 30, No. 5, 1993, pp. 644–651. doi: LinkGoogle Scholar

  • [17] Felli M. and Falchi M., “Propeller Tip and Hub Vortex Dynamics in the Interaction with a Rudder,” Experiments in Fluids, Vol. 51, No. 5, 2011, pp. 1385–1402. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [18] Mukund R. and Chandan Kumar A., “Velocity Field Measurements in the Wake of a Propeller Model,” Experiments in Fluids, Vol. 57, No. 10, 2016. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [19] Miley S. J., Howard R. M. and Holmes B. J., “Wing Laminar Boundary Layer in the Presence of a Propeller Slipstream,” Journal of Aircraft, Vol. 25, No. 7, 1988, pp. 606–611. doi: LinkGoogle Scholar

  • [20] Howard R. M. and Miley S. J., “Time-Dependent Boundary-Layer Response in a Propeller Slipstream,” Journal of Aircraft, Vol. 26, No. 9, 1989, pp. 863–869. doi: LinkGoogle Scholar

  • [21] Jonhston J. F. and Donham R. E., “Attenuation of Propeller-Related Vibration and Noise,” Journal of Aircraft, Vol. 19, No. 10, 1982, pp. 858–867. doi: LinkGoogle Scholar

  • [22] Miller B. A., Dittmar J. H. and Jeracki R. J., “Propeller Tip Vortex: A Possible Contributor to Aircraft Cabin Noise,” Journal of Aircraft, Vol. 19, No. 1, 1982, pp. 84–86. doi: LinkGoogle Scholar

  • [23] Metcalf V. L. and Mayes W. H., “Structureborne Contribution to Interior Noise of Propeller Aircraft,” Business Aircraft Meeting and Exposition, SAE International Paper  TP-830735, Feb. 1983. doi: CrossrefGoogle Scholar

  • [24] Loeffler I. J., “Structureborne Noise Control in Advanced Turboprop Aircraft,” 25th AIAA Aerospace Sciences Meeting, AIAA Paper  1987-530, Jan. 1987. doi: LinkGoogle Scholar

  • [25] Unruh J. F., “Aircraft Propeller Induced Structure-Borne Noise,” NASA CR-4255, Oct. 1989. Google Scholar

  • [26] Cole J. E. and Martini K. F., “Structureborne Noise Measurements on a Small Twin-Engine Aircraft,” NASA CR-4137, June 1988. Google Scholar

  • [27] Junger M. C., Garrelick J. M., Martinez R. and Cole J. E., “Analytical Model of the Structureborne Interior Noise Induced by a Propeller Wake,” NASA CR-172381, May 1984. Google Scholar

  • [28] Martinez R., “Predictions of Unsteady Wing and Pylon Forces Caused by Propeller Installation,” NASA CR-178298, May 1987. Google Scholar

  • [29] Martinez R., Cole J. E., Martini K. and Westagard A., “All-Theoretical Prediction of Cabin Noise due to Impingement of Propeller Vortices on a Wing Structure,” 11th Aeroacoustics Conference, AIAA Paper  1987-2681, Oct. 1987. doi: LinkGoogle Scholar

  • [30] Unruh J. F., “Prediction of Aircraft-Propeller-Induced, Structure-Borne Interior Noise,” Journal of Aircraft, Vol. 25, No. 8, 1988, pp. 758–764. doi: LinkGoogle Scholar

  • [31] Cole J. E., Westagard Stokes A., Garrelick J. M. and Martini K. F., “Analytical Modeling of the Structureborne Noise Path on a Small Twin-Engine Aircraft,” NASA CR-4136, June 1988. Google Scholar

  • [32] Miranda L. R. and Brennan J. E., “Aerodynamic Effects of Wingtip-Mounted Propellers and Turbines,” 4th Applied Aerodynamics Conference, AIAA Paper  1986-1802, June 1986. doi: LinkGoogle Scholar

  • [33] Snyder M. H. and Zumwalt G. W., “Effects of Wingtip-Mounted Propellers on Wing Lift and Induced Drag,” Journal of Aircraft, Vol. 6, No. 5, 1969, pp. 392–397. doi: LinkGoogle Scholar

  • [34] Scarano F. and Riethmuller M. L., “Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset,” Experiments in Fluids, Vol. 26, No. 6, 1999, pp. 513–523. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [35] Romano G. P., “Analysis of Two-Point Velocity Measurements in Near-Wall Flows,” Experiments in Fluids, Vol. 20, No. 2, 1995, pp. 68–83. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [36] Heidelberg L. J. and Woodward R. P., “Advanced Turboprop Wing Installation Effects Measured by Unsteady Blade Pressure and Noise,” 11th Aeroacoustics Conference, AIAA Paper  1987-2719, Oct. 1987. doi: LinkGoogle Scholar

  • [37] Samuelsson I., “Experimental Investigation of Low Speed Model Propeller Slipstream Aerodynamic Characteristics Including Flow Field Surveys and Nacelle/Wing Static Pressure Measurements,” Proceedings of the 17th International Congress of the Aeronautical Sciences, AIAA, Washington, D.C., Sept. 1990, pp. 71–84. Google Scholar

  • [38] Thom A. D., “Analysis of Vortex-Lifting Surface Interactions,” Ph.D. Thesis, College of Science and Engineering, Univ. of Glasgow, Glasgow, Scotland, U.K., 2011. Google Scholar

  • [39] Felli M., Roberto C. and Guj G., “Experimental Analysis of the Flow Field Around a Propeller–Rudder Configuration,” Experiments in Fluids, Vol. 46, No. 1, 2009, pp. 147–164. doi: EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [40] Bodstein G. C. R., George A. R. and Hui C.-Y., “The Three-Dimensional Interaction of a Streamwise Vortex with a Large-Chord Lifting Surface: Theory and Experiment,” Journal of Fluid Mechanics, Vol. 322, Sept. 1996, pp. 51–79. doi: JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [41] Welch P. D., “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms,” IEEE Transactions on Audio and Electroacoustics, Vol. 15, No. 2, 1967, pp. 70–73. doi: ITADAS 0018-9278 CrossrefGoogle Scholar