Skip to main content
Skip to article control options
No AccessFull-Length Paper

Nonlinear Aeroelastic Trim of Very Flexible Aircraft Described by Detailed Models

Published Online:https://doi.org/10.2514/1.C034787

This Paper presents an efficient algorithm for the nonlinear aeroelastic trim analysis of very flexible aircraft described by detailed models. The algorithm is based on a novel inertia relief technique for large displacements and is applicable to fluid–structure iteration frameworks coupling generic structural and aerodynamic solvers, including high-fidelity commercial solvers. The methodology is tested on a low-order model of the University of Michigan’s X-HALE experimental vehicle in order to compare to reference results for a typical steady rectilinear flight condition. Nonlinear aeroelastic trim analyses conducted at different flight speeds show that the proposed approach gives a smooth and fast convergence to the trim solution, which makes it suitable for high-fidelity aeroelastic design of very flexible aircraft.

References

  • [1] Cesnik C. E. S., Palacios R. and Reichenbach E. Y., “Reexamined Structural Design Procedures for Very Flexible Aircraft,” Journal of Aircraft, Vol. 51, No. 5, 2014, pp. 1580–1591. doi:https://doi.org/10.2514/1.C032464 LinkGoogle Scholar

  • [2] Patil M. J. and Hodges D. H., “Flight Dynamics of Highly Flexible Flying Wings,” Journal of Aircraft, Vol. 43, No. 6, 2006, pp. 1790–1799. doi:https://doi.org/10.2514/1.17640 LinkGoogle Scholar

  • [3] Raghavan B. and Patil M. J., “Flight Dynamics of High Aspect-Ratio Flying Wings: Effect of Large Trim Deformation,” Journal of Aircraft, Vol. 46, No. 5, 2009, pp. 1808–1812. doi:https://doi.org/10.2514/1.36847 LinkGoogle Scholar

  • [4] Raghavan B. and Patil M. J., “Flight Control for Flexible, High-Aspect-Ratio Flying Wings,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 64–74. doi:https://doi.org/10.2514/1.45471 JGCODS 0731-5090 LinkGoogle Scholar

  • [5] Noll T. E., Brown J. M., Perez-Davis M. E., Ishmael S. D., Tiffany G. C. and Gaier M., “Investigation of the Helios Prototype Aircraft Mishap. Vol. 1: Mishap Report,” NASA, Langley Research Center, Hampton, VA, Jan. 2004, https://www.nasa.gov/pdf/64317main_helios.pdf. Google Scholar

  • [6] Su W. and Cesnik C. E. S., “Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 47, No. 5, 2010, pp. 1539–1553. doi:https://doi.org/10.2514/1.47317 LinkGoogle Scholar

  • [7] Hodges D. H., “Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams,” AIAA Journal, Vol. 41, No. 6, 2003, pp. 1131–1137. doi:https://doi.org/10.2514/2.2054 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Su W. and Cesnik C. E. S., “Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft,” International Journal of Solids and Structures, Vol. 48, Nos. 16–17, 2011, pp. 2349–2360. doi:https://doi.org/10.1016/j.ijsolstr.2011.04.012 IJSOAD 0020-7683 CrossrefGoogle Scholar

  • [9] Rodden W. P. and Johnson E. H., MSC Nastran 2016: Aeroelastic Analysis User’s Guide, MacNeal-Schwendler Corp., Santa Ana, CA, 2016. Google Scholar

  • [10] Di Vincenzo F. G. and Castrichini A., Hybrid Static Aeroelasticity Toolkit (HSA) User’s Guide, MSC.Software Toulouse, Toulouse, France, 2013, pp. 31–54. Google Scholar

  • [11] Riso C., Di Vincenzo F. G., Ritter M., Cesnik C. E. S. and Mastroddi F., “A FEM-Based Approach for Nonlinear Aeroelastic Trim of Highly Flexible Aircraft,” 17th International Forum on Aeroelasticity and Structural Dynamics (IFASD), Paper  IFASD-2017-170, June 2017. Google Scholar

  • [12] MSC, MSC Nastran 2016: Non-Linear User’s Guide SOL400, MacNeal-Schwendler Corp., Santa Ana, CA, 2016. Google Scholar

  • [13] MSC, MSC Nastran 2016: Quick Reference Guide, MacNeal-Schwendler Corp., Santa Ana, CA, 2016. Google Scholar

  • [14] Ritter M., Dillinger J. and Meddaikar Y. M., “Static and Dynamic Aeroelastic Validation of a Flexible Forward Swept Composite Wing,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, AIAA Paper 2017-0637, Jan. 2017. doi:https://doi.org/10.2514/6.2017-0637 LinkGoogle Scholar

  • [15] Cesnik C. E. S., Senatore P. J., Su W., Atkins E. M. and Shearer C. M., “X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests,” AIAA Journal, Vol. 50, No. 12, 2012, pp. 2820–2833. doi:https://doi.org/10.2514/1.J051392 AIAJAH 0001-1452 LinkGoogle Scholar

  • [16] Jones J. R. and Cesnik C. E. S., “Preliminary Flight Test Correlations of the X-HALE Aeroelastic Experiment,” Aeronautical Journal of The Royal Aeronautical Society, Vol. 119, No. 1217, Feb. 2015, pp. 855–870. doi:https://doi.org/10.1017/S0001924000010952 CrossrefGoogle Scholar

  • [17] Rodden W. P. and Love J. R., “Equations of Motion of a Quasisteady Flight Vehicle Utilizing Restrained Static Aeroelastic Characteristics,” Journal of Aircraft, Vol. 22, No. 9, 1985, pp. 802–809. doi:https://doi.org/10.2514/3.45205 LinkGoogle Scholar

  • [18] MSC, MSC Nastran 2016: Linear Static Analysis User’s Guide, MacNeal-Schwendler Corp., Santa Ana, CA, 2016. Google Scholar

  • [19] MSC, MSC Nastran 2016: Dynamic Analysis User’s Guide, MacNeal-Schwendler Corp., Santa Ana, CA, 2016. Google Scholar

  • [20] Di Vincenzo F. G., Linari M., Mohdzawawi F. and Morlier J., “Nonlinear Aeroelastic Steady Simulation Applied to Highly Flexible Blades for MAV,” 17th International Forum on Aeroelasticity and Structural Dynamics (IFASD), Paper  IFASD-2017-056, June 2017. Google Scholar

  • [21] Neto A. B. G., Silva R. G. A., Paglione P. and Silvestre F. J., “Formulation of the Flight Dynamics of Flexible Aircraft Using General Body Axes,” AIAA Journal, Vol. 54, No. 11, 2016, pp. 3516–3534. doi:https://doi.org/10.2514/1.J054752 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Teixeira P. C. and Cesnik C. E. S., “Inclusion of Propeller Effects on Aeroelastic Behavior of Very Flexible Aircraft,” 17th International Forum on Aeroelasticity and Structural Dynamics (IFASD), Paper  IFASD-2017-194, June 2017. Google Scholar

  • [23] Ritter M., Cesnik C. E. S. and Krüger W. R., “An Enhanced Modal Approach for Large Deformation Modeling of Wing-Like Structures,” AIAA SciTech Forum, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2015-0176, Jan. 2015. doi:https://doi.org/10.2514/6.2015-0176 LinkGoogle Scholar

  • [24] Ritter M., Jones J. R. and Cesnik C. E. S., “Enhanced Modal Approach for Free-Flight Nonlinear Aeroelastic Simulation of Very Flexible Aircraft,” AIAA SciTech Forum, 15th Dynamics Specialists Conference, AIAA Paper 2016-1794, Jan. 2016. doi:https://doi.org/10.2514/6.2016-1794 LinkGoogle Scholar