Skip to main content
Skip to article control options
No AccessFull-Length Papers

Efficient Aerostructural Wing Optimization Considering Mission Analysis

Published Online:https://doi.org/10.2514/1.C037096

Aerostructural optimization traditionally uses a single or small number of cruise conditions to estimate the mission fuel burn objective function. In reality, a mission includes other flight segments contributing to fuel burn, such as climbing and descent. We aim to quantify how much performance is sacrificed by optimizing the design for a fuel burn approximation that ignores these other flight segments and flight conditions. To do this, we compare traditional approaches to mission-based optimization, which uses an accurate fuel burn objective computed by numerically integrating fuel flow across the mission profile. We find that mission-based optimization offers only marginal benefits over traditional single-point and multipoint approaches for aerostructural optimization of a narrow-body aircraft—only 1–2% in the most extreme cases. Thus, the traditional aerostructural optimization is acceptable, especially in cases where most fuel is burned during cruise. For the cases where climb fuel burn is significant, we introduce a simple change to traditional fuel burn approximation methods that allows the optimizer to find nearly all the fuel burn reduction of mission-based optimization but at the computational cost of multipoint optimization.

References

  • [1] Haftka R. T., “Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints,” AIAA Journal, Vol. 15, No. 8, 1977, pp. 1101–1106. https://doi.org/10.2514/3.7400 LinkGoogle Scholar

  • [2] Kenway G. K. W., Kennedy G. J. and Martins J. R. R. A., “Aerostructural Optimization of the Common Research Model Configuration,” 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2014-3274, 2014. https://doi.org/10.2514/6.2014-3274 LinkGoogle Scholar

  • [3] Martins J. R. R. A., Alonso J. J. and Reuther J. J., “High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 523–530. https://doi.org/10.2514/1.11478 LinkGoogle Scholar

  • [4] Kenway G. K. W. and Martins J. R. R. A., “Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1, 2014, pp. 144–160. https://doi.org/10.2514/1.C032150 LinkGoogle Scholar

  • [5] Yanto J. and Liem R. P., “Aircraft Fuel Burn Performance Study: A Data-Enhanced Modeling Approach,” Transportation Research Part D: Transport and Environment, Vol. 65, Dec. 2018, pp. 574–595. https://doi.org/10.1016/j.trd.2018.09.014 CrossrefGoogle Scholar

  • [6] Kroo I. and Shevell R., “Aircraft Design: Synthesis and Analysis,” Desktop Aeronautics Inc., Textbook Version 0.99, Desktop Aeronautics, Stanford, CA, 2001, Chap. 11.3. Google Scholar

  • [7] Lee H. and Chatterji G. B., “Closed-Form Takeoff Weight Estimation Model for Air Transportation Simulation,” 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, AIAA Paper 2010-9156, 2010. https://doi.org/10.2514/6.2010-9156 LinkGoogle Scholar

  • [8] Bons N. P., Mader C. A., Martins J. R. R. A., Cuco A. P. C. and Odaguil F. I. K., “High-Fidelity Aerodynamic Shape Optimization of a Full Configuration Regional Jet,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2018-0106, 2018. https://doi.org/10.2514/6.2018-0106 LinkGoogle Scholar

  • [9] Liem R. P., Mader C. A., Lee E. and Martins J. R. R. A., “Aerostructural Design Optimization of a 100-Passenger Regional Jet with Surrogate-Based Mission Analysis,” 2013 Aviation Technology, Integration, and Operations Conference, AIAA Paper 2013-4372, 2013. https://doi.org/10.2514/6.2013-4372 LinkGoogle Scholar

  • [10] Bons N. P., “High-Fidelity Wing Design Exploration with Gradient-Based Optimization,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, May 2020. Google Scholar

  • [11] Chau T. and Zingg D., “Fuel Burn Evaluation of a Transonic Strut-Braced-Wing Regional Aircraft Through Multipoint Aerodynamic Optimisation,” Aeronautical Journal, Vol. 1, June 2022, pp. 1–25. https://doi.org/10.1017/aer.2022.64 CrossrefGoogle Scholar

  • [12] Clarke M. A., Erhard R. M., Smart J. T. and Alonso J., “Aerodynamic Optimization of Wing-Mounted Propeller Configurations for Distributed Electric Propulsion Architectures,” AIAA Aviation 2021 Forum, AIAA Paper 2021-2471, 2021. https://doi.org/10.2514/6.2021-2471 LinkGoogle Scholar

  • [13] Jasa J. P., Hwang J. T. and Martins J. R. R. A., “Open-Source Coupled Aerostructural Optimization Using Python,” Structural and Multidisciplinary Optimization, Vol. 57, No. 4, 2018, pp. 1815–1827. https://doi.org/10.1007/s00158-018-1912-8 CrossrefGoogle Scholar

  • [14] Brelje B. J. and Martins J. R. R. A., “Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients,” Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium, AIAA Paper 2018-4979, 2018. https://doi.org/10.2514/6.2018-4979 LinkGoogle Scholar

  • [15] McCullers L. A., “Aircraft Configuration Optimization Including Optimized Flight Profiles,” NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1, NASA N87-11743, 1984, pp. 395–412. Google Scholar

  • [16] Welstead J. R., Caldwell D., Condotta R. and Monroe N., “An Overview of the Layered and Extensible Aircraft Performance System (LEAPS) Development,” 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-1754, 2018. Google Scholar

  • [17] Botero E. M., Wendorff A., MacDonald T., Variyar A., Vegh J. M., Lukaczyk T. W., Alonso J. J., Orra T. H. and Ilario da Silva C., “SUAVE: An Open-Source Environment for Conceptual Vehicle Design and Optimization,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1275, 2016. Google Scholar

  • [18] Trawick D., Perullo C., Armstrong M., Snyder D., Tai J. C. M. and Mavris D. N., “Development and Application of GT-HEAT for the Electrically Variable Engine (TM) Design,” 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-1922, 2017. https://doi.org/10.2514/6.2017-1922 LinkGoogle Scholar

  • [19] Botero E. M. and Alonso J. J., “Conceptual Design and Optimization of Small Transitioning UAVS Using SUAVE,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2017-4149, 2017. LinkGoogle Scholar

  • [20] Brelje B. J., Jasa J. P., Martins J. R. R. A. and Gray J. S., “Development of a Conceptual-Level Thermal Management System Design Capability in OpenConcept,” NATO Research Symposium on Hybrid/Electric Aero-Propulsion Systems for Military Applications (AVT-RSY-323), 2019. https://doi.org/10.14339/STO-MP-AVT-323 Google Scholar

  • [21] Adler E. J., Brelje B. J. and Martins J. R. R. A., “Thermal Management System Optimization for a Parallel Hybrid Aircraft Considering Mission Fuel Burn,” Aerospace, Vol. 9, No. 5, 2022. https://doi.org/10.3390/aerospace9050243 CrossrefGoogle Scholar

  • [22] Gladin J. C., Trawick D., Perullo C., Tai J. C. and Mavris D. N., “Modeling and Design of a Partially Electric Distributed Aircraft Propulsion System with GT-HEAT,” 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-1924, 2017. Google Scholar

  • [23] Liem R. P., Kenway G. K. W. and Martins J. R. R. A.Multimission Aircraft Fuel Burn Minimization via Multipoint Aerostructural Optimization,” AIAA Journal, Vol. 53, No. 1, 2015, pp. 104–122. https://doi.org/10.2514/1.J052940 LinkGoogle Scholar

  • [24] Hwang J. T., Jasa J. P. and Martins J. R. R. A., “High-Fidelity Design-Allocation Optimization of a Commercial Aircraft Maximizing Airline Profit,” Journal of Aircraft, Vol. 56, No. 3, 2019, pp. 1164–1178. https://doi.org/10.2514/1.C035082 LinkGoogle Scholar

  • [25] Variyar A., Economon T. D. and Alonso J. J., “Multifidelity Conceptual Design and Optimization of Strut-Braced Wing Aircraft Using Physics Based Methods,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-2000, 2016. Google Scholar

  • [26] Jasa J. P., Hwang J. T. and Martins J. R. R. A., “Design and Trajectory Optimization of a Morphing Wing Aircraft,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2018-1382, 2018. LinkGoogle Scholar

  • [27] Gray J. S., Hwang J. T., Martins J. R. R. A., Moore K. T. and Naylor B. A., “OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp. 1075–1104. https://doi.org/10.1007/s00158-019-02211-z CrossrefGoogle Scholar

  • [28] Hwang J. T. and Martins J. R. R. A.A Computational Architecture for Coupling Heterogeneous Numerical Models and Computing Coupled Derivatives,” ACM Transactions on Mathematical Software, Vol. 44, No. 4, 2018, Article 37. https://doi.org/10.1145/3182393 CrossrefGoogle Scholar

  • [29] Hendricks E. S. and Gray J. S., “pyCycle: A Tool for Efficient Optimization of Gas Turbine Engine Cycles,” Aerospace, Vol. 6, No. 87, 2019. https://doi.org/10.3390/aerospace6080087 Google Scholar

  • [30] Lambe A. B. and Martins J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, Vol. 46, Jan. 2012, pp. 273–284. https://doi.org/10.1007/s00158-012-0763-y CrossrefGoogle Scholar

  • [31] Nita M. and Scholz D., “Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters,” Deutscher Luft- und Raumfahrtkongress, German Society for Aeronautics and Astronautics (DGLR), Berlin, 2012, http://www.dlrk2012.dglr.de/. Google Scholar

  • [32] Raymer D. P., Aircraft Design: A Conceptual Approach, AIAA, Reston, VA, 1992, p. 403, Chap. 15.3. Google Scholar

  • [33] Chauhan S. S. and Martins J. R. R. A., “Low-Fidelity Aerostructural Optimization of Aircraft Wings with a Simplified Wingbox Model Using OpenAeroStruct,” Proceedings of the 6th International Conference on Engineering Optimization, EngOpt 2018, Springer, Lisbon, 2018, pp. 418–431. https://doi.org/10.1007/978-3-319-97773-7_38 Google Scholar

  • [34] Brooks T. R., Kenway G. K. W. and Martins J. R. R. A., “Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2017-4456, 2017. https://doi.org/10.2514/6.2017-4456 Google Scholar

  • [35] Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Millman K. J., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., Polat B., Feng Y., Moore E. W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris C. R., Archibald A. M., Ribeiro A. H., Pedregosa F. and van Mulbregt P., and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, Vol. 17, Feb. 2020, pp. 261–272. https://doi.org/10.1038/s41592-019-0686-2 CrossrefGoogle Scholar

  • [36] Liem R. P., Mader C. A. and Martins J. R. R. A., “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Aircraft Mission Analysis,” Aerospace Science and Technology, Vol. 43, June 2015, pp. 126–151. https://doi.org/10.1016/j.ast.2015.02.019 CrossrefGoogle Scholar

  • [37] Kao J. Y., Hwang J. T., Martins J. R. R. A., Gray J. S. and Moore K. T., “A Modular Adjoint Approach to Aircraft Mission Analysis and Optimization,” Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech), AIAA Paper 2015-0136, 2015. LinkGoogle Scholar

  • [38] Kreisselmeier G. and Steinhauser R., “Systematic Control Design by Optimizing a Vector Performance Index,” International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems, 1979. https://doi.org/10.1016/S1474-6670(17)65584-8 Google Scholar

  • [39] Lambe A. B., Martins J. R. R. A. and Kennedy G. J., “An Evaluation of Constraint Aggregation Strategies for Wing Box Mass Minimization,” Structural and Multidisciplinary Optimization, Vol. 55, No. 1, 2017, pp. 257–277. https://doi.org/10.1007/s00158-016-1495-1 CrossrefGoogle Scholar

  • [40] Kenway G. K. W. and Martins J. R. R. A., “Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing,” AIAA Journal, Vol. 54, No. 1, 2016, pp. 113–128. https://doi.org/10.2514/1.J054154 LinkGoogle Scholar

  • [41] Gill P. E., Murray W. and Saunders M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Review, Vol. 47, No. 1, 2005, pp. 99–131. https://doi.org/10.1137/S0036144504446096 CrossrefGoogle Scholar

  • [42] Roskam J., Airplane Design, 5th ed., Vol. 8, DARCorp., Lawrence, KS, 2018, Chap. 4. Google Scholar

  • [43] Chiba K., Obayashi S. and Nakahashi K., “High-Fidelity Multidisciplinary Design Optimization of Aerostructural Wing Shape for Regional Jet,” Proceedings of the 23rd AIAA Applied Aerodynamics Conference, 2005. LinkGoogle Scholar

  • [44] Hale F. J., “Best-Range Flight Conditions for Cruise-Climb Flight of a Jet Aircraft,” NASA, Langley Research Center Advances in Engineering Sciences, Vol. 4, 1976, https://ntrs.nasa.gov/citations/19770003437. Google Scholar