Skip to main content
Skip to article control options
No AccessFull-Length Paper

Attitude Stabilization for Lunar and Planetary Lander with Variable Damper

Published Online:

This paper describes an attitude control method that has been designed to prevent the overturning of lunar and planetary landers, based on a variable-damping shock absorber for the landing gear. Conventionally, the landing gear of lunar and planetary landers has a fixed shock attenuation parameter that is not used proactively for attitude control of the lander during the touchdown sequence. The new method enables the suppression of any disturbance to the attitude of the lander by adjusting the damping coefficient of each landing leg independently, based on the angular velocity vector and displacement velocity of each leg of the lander. The results of a numerical simulation indicate that the control rule for a three-dimensional system is effective for preventing the overturning of the lander on inclined terrain. The results of the simulation and experiments show that the landing gear with the actively variable damping and the control rule play a major role in preventing the overturning of a lunar or planetary lander.


  • [1] Sawai S., Mizuno T., Fukuda S., Nakaya K., Haruyama J., Okada T., Nakatsuka J., Saiki T., Yasumitsu R. and Morishima K., “Conceptual Study on SLIM: Smart Lunar Landing Technology Demonstrator,” Proceedings of 28th International Symposium on Space Technology and Science, Japan Soc. for Aeronautical and Space Sciences, Tokyo, 2011, Paper 2011-f-21. Google Scholar

  • [2] Hashimoto T., Hoshino T., Tanaka S., Otsuki M., Otake H. and Morimoto H., “Japanese Moon Lander SELENE-2-Present Status in 2009,” Acta Astronautica, Vol. 68, No. 7–8, 2011, pp. 1386–1391. doi: AASTCF 0094-5765 CrossrefGoogle Scholar

  • [3] Haruyama J., Sawai S., Mizuno T., Yoshimitsu T., Fukuda S. and Nakatani I., “Exploration of Lunar Holes, Possible Skylights of Underlying Lava Tubes, by Smart Lander for Investigating Moon (SLIM),” Transactions of The Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 10, No. ISTS28, 2012, pp. Pk_7–Pk_10. doi: CrossrefGoogle Scholar

  • [4] Taguchi K., Hashimoto T. and Otsuki M., “Dynamic Touchdown Control for Safe and Precise Landing Using Active Landing Leg,” Proceedings of 53th Space Sciences and Technology Conference, Japan Soc. for Aeronautical and Space Sciences, Tokyo, 2009, Paper 2D05. Google Scholar

  • [5] Maeda T., Hashimoto T., Otsuki M. and Sakai S., “Development of Active Controlled Landing Gear Experiment System for the Lunar–Planetary Lander,” Proceedings of 11th Conference on Motion and Vibration Control, Japan Soc. of Mechanical Engineering, Tokyo, 2012, Paper B112. Google Scholar

  • [6] Shigeto S., Fujimoto H., Hori Y., Otsuki M. and Hashimoto T., “Fundamental Research on Reduction of Impact Forces Using Actively Controlled Landing Gear in Lunar/Planetary Landers,” IEEJ Transactions on Industry Applications, Vol. 133, No. 3, 2013, pp. 335–341. doi: CrossrefGoogle Scholar

  • [7] Hara S., Watanabe T., Kushida Y., Otsuki M., Yamada Y., Matsuhisa H., Yamada K., Hashimoto T. and Kubota T., “Study on Landing Response Control of Planetary Exploration Spacecraft Based on Momentum Exchange Principles,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 78, No. 792, 2012, pp. 2781–2796 (in Japanese). doi:10.1299/kikaic.78.2781 CrossrefGoogle Scholar

  • [8] Kushida Y., Hara S., Otsuki M., Yamada Y., Hashimoto T. and Kubota T., “Robust Landing Gear System Based on a Hybrid Momentum Exchange Impact Damper,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 3, 2013, pp. 776–789. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [9] Saeki N., Hara S., Otsuki M., Watanabe T. and Yamada Y., “Base-Extension Separation Mechanism for Planetary Exploration Spacecraft Landing,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 12, No. ISTS29, 2014, pp. Pd_91–Pd_100. doi: CrossrefGoogle Scholar

  • [10] Manivannan V., Langley J. P., Costello M. F. and Ruzzene M., “Rotorcraft Slope Landings with Articulated Landing Gear,” AIAA Paper  2013-5160, 2013.doi: LinkGoogle Scholar

  • [11] Kiefer J., Ward M. and Costello M., “Rotorcraft Hard Landing Mitigation Using Robotic Landing Gear,” Journal of Dynamic Systems, Measurement, and Control, Vol. 138, No. 3, 2016, Paper 031003. doi: JDSMAA 0022-0434 CrossrefGoogle Scholar

  • [12] Rippere T. B. and Wiens G. J., “An Approach to Designing Passive Self-Leveling Landing Gear with Application to the Lunar Lander,” Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, 2010, pp. 327–334. Google Scholar

  • [13] Maeda T., Otsuki M. and Hashimoto T., “Overturning Protection Control of Lunar-Planetary Lander with Semi-Active Shock Absorber,” Transactions of the JSME, Vol. 80, No. 816, 2014, pp. DR0235–DR0235 (in Japanese). doi: Google Scholar

  • [14] Sakai S., Sawai S., Fukuda S., Nakaya K., Sato E., Kunugi M. and Yasumitsu R., “Smart Lander for Investigating Moon (SLIM): Demonstration of Smart Lunar Landing Technology with Small Spacecraft,” Proceedings of 57th Space Sciences and Technology Conference, Japan Soc. for Aeronautical and Space Sciences, Tokyo, 2013, Paper 3F06. Google Scholar

  • [15] Dyke S., Spencer B., Sain M. and Carlson J., “Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction,” Smart Materials and Structures, Vol. 5, No. 5, 1996, p. 565. doi: SMSTER 0964-1726 CrossrefGoogle Scholar

  • [16] Ho C., Lang Z., Sapiński B. and Billings S., “Vibration Isolation Using Nonlinear Damping Implemented by a Feedback-Controlled MR Damper,” Smart Materials and Structures, Vol. 22, No. 10, 2013, Paper 105010. doi: SMSTER 0964-1726 CrossrefGoogle Scholar

  • [17] LORD Technical Data RD-8040-1 and RD-8041-1 Dampers,” [retrieved Nov. 2015]. Google Scholar

  • [18] Christensen E. M., Batterson S. A., Benson H. E., Choate R., Hutton R. E., Jaffe L. D., Jones R. H., Ko H. Y., Schmidt F. N., Scott R. F., Spencer R. L. and Sutton G. H., “Lunar Surface Mechanical Properties,” Journal of Geophysical Research, Vol. 73, No. 22, 1968, pp. 7169–7192. doi: JGREA2 0148-0227 CrossrefGoogle Scholar

  • [19] Schiehlen W., “Multibody System Dynamics: Roots and Perspectives,” Multibody System Dynamics, Vol. 1, No. 2, 1997, pp. 149–188. doi: CrossrefGoogle Scholar

  • [20] Herr R. W. and Leonard H. W., “Dynamic Model Investigation of Touchdown Stability of Lunar-Landing Vehicles,” NASA Technical Note  TN-D-4215, 1967. Google Scholar

  • [21] Herr R. W., Leonard H. W. and Walton W. C., “Studies of Touchdown Stability for Lunar Landing Vehicles,” Journal of Spacecraft and Rockets, Vol. 1, No. 5, 1964, pp. 552–556. doi: JSCRAG 0022-4650 LinkGoogle Scholar