Skip to main content
No AccessSpace Domain Awareness

Sensor Allocation for Tracking Geosynchronous Space Objects

Published Online:https://doi.org/10.2514/1.G000421

Tracking geosynchronous space objects from ground-based sensors is a complicated task due to the large number of objects and limited number of available sensors, which are further restricted in the times they are operational. To maintain an accurate catalog, it is essential to collect measurements efficiently to maximize use of the limited information available. Recent advances in multitarget filtering and information theory allow formulation of sensor allocation schemes in terms of information gain functionals computed from the multitarget state and hypothesized measurements. This work develops a tasking scheme designed to take the fullest advantage of limited observation opportunities by maximizing the information gain. Simulation results are presented in which a representative catalog of nearly 1000 geosynchronous objects are tracked using three sensors. The results demonstrate that the method is able to schedule observations of all objects successfully where other ad hoc methods fall short.

References

  • [1] Mahler R. P. S., Advances in Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, MA, 2014, pp. 827–939. Google Scholar

  • [2] Mahler R. P. S., “Sensor Management with Non-Ideal Sensor Dynamics,” 7th International Conference on Information Fusion (FUSION), International Soc. of Information Fusion, Mountain View, CA, 2004, pp. 783–790. Google Scholar

  • [3] Mahler R., “Multitarget Sensor Management of Dispersed Mobile Sensors,” Theory and Algorithms for Cooperative Systems, edited by Grundel D., Murphey R. and Pardalos P., World Scientific Publishing Co., Singapore, 2004, pp. 239–310. doi:https://doi.org/10.1142/9789812796592_0012 CrossrefGoogle Scholar

  • [4] Mahler R. P. S., “Multitarget Bayes Filtering via First-Order Multitarget Moments,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 2003, pp. 1152–1178. doi:https://doi.org/10.1109/TAES.2003.1261119 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [5] Vo B.-N. and Ma W.-K., “The Gaussian Mixture Probability Hypothesis Density Filter,” IEEE Transactions on Signal Processing, Vol. 54, No. 11, 2006, pp. 4091–4104. doi:https://doi.org/10.1109/TSP.2006.881190 ITPRED 1053-587X CrossrefGoogle Scholar

  • [6] Mahler R. P. S., “PHD Filters of Higher Order in Target Number,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 4, 2007, pp. 1523–1543. doi:https://doi.org/10.1109/TAES.2007.4441756 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [7] Vo B.-T., Vo B.-N. and Cantoni A., “Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter,” IEEE Transactions on Signal Processing, Vol. 55, No. 7, 2007, pp. 3553–3567. doi:https://doi.org/10.1109/TSP.2007.894241 ITPRED 1053-587X CrossrefGoogle Scholar

  • [8] Vo B.-T., Vo B.-N. and Cantoni A., “The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations,” IEEE Transactions on Signal Processing, Vol. 57, No. 2, 2009, pp. 409–423. doi:https://doi.org/10.1109/TSP.2008.2007924 ITPRED 1053-587X CrossrefGoogle Scholar

  • [9] Delande E., Üney M., Houssineau J. and Clark D. E., “Regional Variance for Multi-Object Filtering,” IEEE Transactions on Signal Processing, Vol. 62, No. 13, 2014, pp. 3415–3428. doi:https://doi.org/10.1109/TSP.2014.2328326 ITPRED 1053-587X CrossrefGoogle Scholar

  • [10] Hoang H. G. and Vo B.-T., “Sensor Management for Multi-Target Tracking via Multi-Bernoulli Filtering,” Automatica, Vol. 50, No. 4, 2014, pp. 1135–1142. doi:https://doi.org/10.1016/j.automatica.2014.02.007 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [11] Zajic T. and Mahler R. P. S., “Practical Information-Based Data Fusion Performance Evaluation,” Proceedings of the SPIE Signal Processing, Sensor Fusion, and Target Recognition VIII, Vol. 3720, SPIE, Bellingham, WA, 1999, pp. 92–103. doi:https://doi.org/10.1117/12.357148 Google Scholar

  • [12] Rényi A., “On Measures of Entropy and Information,” Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, Contributions to the Theory of Statistics, Univ. of California Press, Berkeley, CA, 1961, pp. 547–561. Google Scholar

  • [13] Kullback S. and Leibler R. A., “On Information and Sufficiency,” Annals of Mathematical Statistics, Vol. 22, No. 1, 1951, pp. 79–86. doi:https://doi.org/10.1214/aoms/1177729694 CrossrefGoogle Scholar

  • [14] Shannon C. E., “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol. 27, No. 3, 1948, pp. 379–423. doi:https://doi.org/10.1002/bltj.1948.27.issue-3 BSTJAN 0005-8580 CrossrefGoogle Scholar

  • [15] Hero A. O., Kreucher C. and Blatt D., “Information Theoretic Approaches to Sensor Management,” Foundations and Applications of Sensor Management, edited by Hero A. O., Castanón D. A., Cochran D. and Kastella K., Springer, New York, 2008, pp. 33–57. doi:https://doi.org/10.1007/978-0-387-49819-5_3 CrossrefGoogle Scholar

  • [16] Ristic B., Vo B.-N. and Clark D., “A Note on the Reward Function for PHD Filters with Sensor Control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 2, 2011, pp. 1521–1529. doi:https://doi.org/10.1109/TAES.2011.5751278 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [17] Hoang H. G., Vo B.-N., Vo B.-T. and Mahler R., “The Cauchy-Schwarz Divergence for Poisson Point Processes,” IEEE Transactions on Information Theory, Vol. 61, No. 8, 2015, pp. 4475–4485. doi:https://doi.org/10.1109/TIT.2015.2441709 IETTAW 0018-9448 CrossrefGoogle Scholar

  • [18] DeMars K. J., Hussein I. I., Jah M. K. and Erwin R. S., “The Cauchy–Schwarz Divergence for Assessing Situational Information Gain,” 15th International Conference on Information Fusion (FUSION), International Soc. of Information Fusion, Mountain View, CA, 2012, pp. 1126–1133. Google Scholar

  • [19] Mahler R. P. S., Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, MA, 2007, pp. 631–640. Google Scholar

  • [20] Ulmke M., Erdinc O. and Willett P., “Gaussian Mixture Cardinalized PHD Filter for Ground Moving Targets,” 10th International Conference on Information Fusion (FUSION), International Soc. of Information Fusion, Mountain View, CA, 2007, pp. 1–8. doi:https://doi.org/10.1109/icif.2007.4408105 Google Scholar

  • [21] Julier S. J. and Uhlmann J. K., “New Extension of the Kalman Filter to Nonlinear Systems,” Proceedings of the SPIE Signal Processing, Sensor Fusion, and Target Recognition VI, Vol. 3068, SPIE, Bellingham, WA, 1997, pp. 182–193. doi:https://doi.org/10.1117/12.280797 Google Scholar

  • [22] Wan E. A. and van der Merwe R., “The Unscented Kalman Filter For Nonlinear Estimation,” The IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium (AS-SPCC), IEEE Publ., Piscataway, NJ, 2000, pp. 153–158. doi:https://doi.org/10.1109/ASSPCC.2000.882463 Google Scholar

  • [23] Lee C. S., Clark D. E. and Salvi J., “SLAM with Dynamic Targets via Single-Cluster PHD Filtering,” IEEE Journal of Selected Topics in Signal Processing, Vol. 7, No. 3, 2013, pp. 543–552. doi:https://doi.org/10.1109/JSTSP.2013.2251606 CrossrefGoogle Scholar

  • [24] DeMars K. J., Bishop R. H. and Jah M. K., “Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1047–1057. doi:https://doi.org/10.2514/1.58987 JGCODS 0731-5090 LinkGoogle Scholar

  • [25] Beard M., Vo B.-T., Vo B.-N. and Arulampalam S., “Sensor Control for Multi-Target Tracking Using Cauchy–Schwarz Divergence,” 18th International Conference on Information Fusion (FUSION), International Soc. of Information Fusion, Mountain View, CA, 2015, pp. 937–944. Google Scholar

  • [26] Tapley B., Schutz B. and Born G., Statistical Orbit Determination, 1st ed., Elsevier Academic Press, New York, 2004, pp. 199–209. Google Scholar

  • [27] Williams P. S., Spencer D. B. and Erwin R. S., “Comparison of Two Single-Step, Myopic Sensor Management Decision Processes Applied to Space Situational Awareness,” Proceedings of the 22nd AAS/AIAA Spaceflight Mechanics Meeting, American Astronautical Soc., Springfield, VA, 2012, pp. 173–190. Google Scholar

  • [28] Williams P. S., “Coupling Between Nonlinear Estimation and Dynamic Sensor Tasking Applied to Satellite Tracking,” Ph.D. Dissertation, Pennsylvania State Univ., State College, PA, 2012. Google Scholar

  • [29] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., Microcosm Press, Hawthorne, CA, 2007, p. 257. Google Scholar

  • [30] Faccenda W. J., Ferris D., Williams C. M. and Brisnehan D., “Deep Stare Technical Advancements and Status,” AMOS 2003 Technical Conference Proceedings (Advanced Maui Optical and Space Surveillance Technologies Conference), Maui Economic Development Board, Inc., Maui, HI, 2003. Google Scholar

  • [31] Blackman S. and Popoli R., Design and Analysis of Modern Tracking Systems, Artech House, Norwood, MA, 1999, pp. 344–349. Google Scholar

  • [32] Folkner W. M., Williams J. G., Boggs D. H., Park R. S. and Kuchynka P., “The Planetary and Lunar Ephemerides DE430 DE431,” Jet Propulsion Laboratory, California Inst. of Technology, Interplanetary Network Progress Rept. 42-196, Pasadena, CA, 2014, http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf [retrieved 07 Oct. 2015]. Google Scholar

  • [33] Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., “An Earth Gravitational Model to Degree 2160: EGM2008,” Proceedings of the European Geosciences Union General Assembly, Vol. 10, European Geosciences Union EGU2008-A-01891, 2008. Google Scholar

  • [34] Chao C.-C., Applied Orbit Perturbation and Maintenance, Aerospace Press, El Segundo, CA, 2005, pp. 7–16. LinkGoogle Scholar