Skip to main content
Skip to article control options
No AccessFull-Length Paper

Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits

Published Online:https://doi.org/10.2514/1.G000472

The main objective of this paper is to present the development of the computational methodology, based on the Gaussian mixture model, that enables accurate propagation of the probability density function through the mathematical models for orbit propagation. The key idea is to approximate the density function associated with orbit states by a sum of Gaussian kernels. The unscented transformation is used to propagate each Gaussian kernel locally through nonlinear orbit dynamical models. Furthermore, a convex optimization problem is formulated by forcing the Gaussian mixture model approximation to satisfy the Kolmogorov equation at every time instant to solve for the amplitudes of Gaussian kernels. Finally, a Bayesian framework is used on the Gaussian mixture model to assimilate observational data with model forecasts. This methodology effectively decouples a large uncertainty propagation problem into many small problems. A major advantage of the proposed approach is that it does not require the knowledge of system dynamics and the measurement model explicitly. The simulation results are presented to illustrate the effectiveness of the proposed ideas.

References

  • [1] Kalman R. E., “A New Approach to Linear Filtering and Prediction Problems 1,” Transactions of the ASME-Journal of Basic Engineering, Vol. 82, No. Series D, 1960, pp. 35–45. CrossrefGoogle Scholar

  • [2] Schmidt S. F.,“Application of State-Space Methods to Navigation Problems,” Advanced Control Systems, Vol. 3, 1966, pp. 293–340. CrossrefGoogle Scholar

  • [3] Alspach D. and Sorenson H., “Nonlinear Bayesian Estimation Using Gaussian Sum Approximations,” IEEE Transactions on Automatic Control, Vol. 17, No. 4, 1972, pp. 439–448. doi:https://doi.org/10.1109/TAC.1972.1100034 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [4] Julier S. and Uhlmann J., “Unscented Filtering and Nonlinear Estimation,” Proceedings of the IEEE, Vol. 92, No. 3, March 2004, pp. 401–422. Google Scholar

  • [5] Junkins J. L. and Singla P., “How Nonlinear Is It? A Tutorial on Nonlinearity of Orbit and Attitude Dynamics,” Journal of Astronautical Sciences, Vol. 52, Nos. 1–2, 2004, pp. 7–60. CrossrefGoogle Scholar

  • [6] Junkins J. L., Akella M. R. and Alfriend K. T., “Non-Gaussian Error Propagation in Orbital Mechanics,” Guidance and Control, Vol. 44, No. 4, 1996, pp. 283–298. Google Scholar

  • [7] Daum F. E., “A New Nonlinear Filtering Formula for Discrete Time measurements,” 24th Inst. of Electrical and Electronics Engineers Conference on Decision and Control, Vol. 24, Inst. of Electrical and Electronics Engineers, Ft. Lauderdale, FL, 1985, pp. 1957–1958. Google Scholar

  • [8] Daum F. E., “A New Nonlinear Filtering Formula for Non-Gaussian Discrete Time Measurements,” 25th Inst. of Electrical and Electronics Engineers Conference on Decision and Control, Vol. 25, Inst. of Electrical and Electronics Engineers, Athens, Greece, 1986, pp. 1030–1031. Google Scholar

  • [9] Daum F. E., “Exact Finite Dimensional Nonlinear Filters,” 24th Inst. of Electrical and Electronics Engineers Conference on Decision and Control, Vol. 24, Inst. of Electrical and Electronics Engineers, Ft. Lauderdale, FL, 1985, pp. 1938–1945. Google Scholar

  • [10] Ito K. and Xiong K., “Gaussian Filters for Nonlinear Filtering Problems,” IEEE Transactions on Automatic Control, Vol. 45, No. 5, 2000, pp. 910–927. doi:https://doi.org/10.1109/9.855552 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [11] Sloan I. H. and Woniakowski H., “When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?Journal of Complexity, Vol. 14, No. 1, 1998, pp. 1–33. doi:https://doi.org/10.1006/jcom.1997.0463 JOCOEH 0885-064X CrossrefGoogle Scholar

  • [12] Terejanu G., Singla P., Singh T. and Scott P. D., “Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1623–1633. doi:https://doi.org/10.2514/1.36247 JGCDDT 0162-3192 LinkGoogle Scholar

  • [13] Doucet A., de Freitas N. and Gordon N., Sequential Monte-Carlo Methods in Practice, Springer–Verlag, Berlin, April 2010, pp. 6–14. Google Scholar

  • [14] Khan Z., Balch T. and Dellaert F., “An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets,” Computer Vision-ECCV 2004, Springer–Verlag, Berlin, 2004, pp. 279–290. CrossrefGoogle Scholar

  • [15] Khan Z., Balch T. and Dellaert F., “MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 11, 2005, pp. 1805–1819. ITPIDJ 0162-8828 CrossrefGoogle Scholar

  • [16] Daum F. E. and Huang J., “Curse of Dimensionality and Particle Filters,” Proceedings of the 2003 Inst. of Electrical and Electronics Engineers Aerospace Conference, Vol. 4, Inst. of Electrical and Electronics Engineers, Montana, 2003, pp. 1979–1993. Google Scholar

  • [17] Lo J., “Finite-Dimensional Sensor Orbits and Optimal Nonlinear Filtering,” IEEE Transactions on Information Theory, Vol. 18, No. 5, 1972, pp. 583–588. doi:https://doi.org/10.1109/TIT.1972.1054885 IETTAW 0018-9448 CrossrefGoogle Scholar

  • [18] Sorenson H. W. and Alspach D., “Recursive Bayesian Estimation Using Gaussian Sums,” Automatica, Vol. 7, No. 4, 1971, pp. 465–479. doi:https://doi.org/10.1016/0005-1098(71)90097-5 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [19] Cameron A.,“Control, and Estimation of Linear Systems with Non-Gaussian A Priori Distributions,” Proceedings of the 6th Annual Allerton Conference Circuit and System Theory, IEEE, Urbana, IL, 1968. Google Scholar

  • [20] Chen R. and Liu J., “Mixture Kalman Filters,” Journal of the Royal Statistical Society: Series B, Vol. 62, No. 3, 2000, pp. 493–508. doi:https://doi.org/10.1111/1467-9868.00246 CrossrefGoogle Scholar

  • [21] Kotecha J. and Djuric P., “Gaussian Sum Particle Filtering,” IEEE Transactions on Signal Processing, Vol. 51, No. 10, Oct. 2003, pp. 2602–2612. doi:https://doi.org/10.1109/TSP.2003.816754 ITPRED 1053-587X CrossrefGoogle Scholar

  • [22] Blom H. and Bar-Shalom Y., “The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients,” IEEE Transactions on Automatic Control, Vol. 33, No. 8, 1988, pp. 780–783. doi:https://doi.org/10.1109/9.1299 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [23] Tam W. I., Plataniotis K. N. and Hatzinakos D., “An Adaptive Gaussian Sum Algorithm for Radar Tracking,” Signal Processing, Vol. 77, No. 1, 1999, pp. 85–104. doi:https://doi.org/10.1016/S0165-1684(99)00025-0 SPRODR 0165-1684 CrossrefGoogle Scholar

  • [24] Musicki D., Scala B. L. and Evans R., “The Integrated Track Splitting Filter—Efficient Multi-Scan Single Target Tracking in Clutter,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 4, 2007, pp. 1409–1425. doi:https://doi.org/10.1109/TAES.2007.4441748 IEARAX 0018-9251 CrossrefGoogle Scholar

  • [25] Brasnett P., Mihaylova L., Canagarajah N. and Bull D., “Particle Filtering with Multiple Cues for Object Tracking in Video Sequences,” Proceedings of Soc. of Photo-Optical Instrumentation Engineers Annual Symposium, Vol. 5685, SPIE, San Jose, CA, 2005, pp. 430–441. Google Scholar

  • [26] Han B., Zhu Y., Comaniciu D. and Davis L., “Kernel-Based Bayesian Filtering for Object Tracking,” Proceedings of the Inst. of Electrical and Electronics Engineers Conference on Computer Vision and Pattern Recognition, Inst. of Electrical and Electronics Engineers, San Diego, 2005, pp. 227–234. Google Scholar

  • [27] Santamaria I., Pantaleon C., Ibanez J. and Artes A., “Deconvolution of Seismic Data Using Adaptive Gaussian Mixtures,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, March 1999, pp. 855–859. doi:https://doi.org/10.1109/36.752203 IGRSD2 0196-2892 CrossrefGoogle Scholar

  • [28] Horwood J., Aragon N. and Poore A., “Gaussian Sum Filters for Space Surveillance: Theory and Simulations,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1839–1851. doi:https://doi.org/10.2514/1.53793 JGCDDT 0162-3192 LinkGoogle Scholar

  • [29] DeMars K. J., Bishop R. H. and Jah M. K., “Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1047–1057. JGCDDT 0162-3192 LinkGoogle Scholar

  • [30] Singla P. and Singh T., “A Gaussian Function Network for Uncertainty Propagation Through Nonlinear Dynamical System,” 18th Advances in Astronautical Sciences/AIAA Spaceflight Mechanics Meeting, AAS Paper  2008-154, 2008. Google Scholar

  • [31] Terejanu G., Singla P., Singh T. and Scott P. D., “Adaptive Gaussian Sum Filter for Nonlinear Bayesian Estimation,” IEEE Transactions on Automatic Control, Vol. 56, No. 9, 2011, pp. 2151–2156. doi:https://doi.org/10.1109/TAC.2011.2141550 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [32] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., Microcosm, 2007, pp. 549–553. Google Scholar

  • [33] Risken H., The Fokker-Planck Equation: Methods of Solution and Applications, Springer–Verlag, Berlin, 1989, pp. 1–12 and 32–62. Google Scholar

  • [34] Fuller A. T., “Analysis of Nonlinear Stochastic Systems by Means of the Fokker-Planck Equation,” International Journal of Control, Vol. 9, No. 6, 1969, pp. 603–655. doi:https://doi.org/10.1080/00207176908905786 IJCOAZ 0020-7179 CrossrefGoogle Scholar

  • [35] Lambert H. C., Daum F. E. and Weatherwax J. L., “A Split-Step Solution of the Fokker-Planck Equation for the Conditional Density,” ACSSC 2006: 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2006, pp. 2014–2018. Google Scholar

  • [36] Kumar M., Singla P., Chakravorty S. and Junkins J. L., “A Multi-Resolution Approach for Steady State Uncertainty Determination in Nonlinear Dynamical Systems,” 38th Southeastern Symposium on System Theory, IEEE, Cookeville, TN, 2006, pp. 344–348. Google Scholar

  • [37] Kumar M., Singla P., Chakravorty S. and Junkins J. L., “The Partition of Unity Finite Element Approach to the Stationary Fokker-Planck Equation,” 2006 AIAA/Advances in Astronautical Sciences Astrodynamics Specialist Conference and Exhibit, AIAA Paper  2006-6285, 2006. LinkGoogle Scholar

  • [38] Kumar M., Chakravorty S., Singla P. and Junkins J. L., “The Partition of Unity Finite Element Approach with Hp-Refinement for the Stationary Fokker-Planck Equation,” Journal of Sound and Vibration, Vol. 327, Nos. 1–2, 2009, pp. 144–162. doi:https://doi.org/10.1016/j.jsv.2009.05.033 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [39] Muscolino G., Ricciardi G. and Vasta M., “Stationary and Non-Stationary Probability Density Function for Non-Linear Oscillators,” International Journal of Non-Linear Mechanics, Vol. 32, No. 6, 1997, pp. 1051–1064. doi:https://doi.org/10.1016/S0020-7462(96)00134-5 IJNMAG 0020-7462 CrossrefGoogle Scholar

  • [40] Paola M. D. and Sofi A., “Approximate Solution of the Fokker-Planck-Kolmogorov Equation,” Probabilistic Engineering Mechanics, Vol. 17, No. 4, 2002, pp. 369–384. doi:https://doi.org/10.1016/S0266-8920(02)00034-6 PEMEEX 0266-8920 CrossrefGoogle Scholar

  • [41] Terejanu G., Singla P., Singh T. and Scott P. D., “A Novel Gaussian Sum Filter Methods for Accurate Solution to Nonlinear Filtering Problem,” International Conference on Information Fusion, IEEE, Cologne, Germany, 2008, pp. 1–8. Google Scholar

  • [42] Terejanu G., Singla P., Singh T. and Scott P. D., “Uncertainty Propagation for Nonlinear Dynamical Systems Using Gaussian Mixture Models,” Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper  2008-7472, 2008. LinkGoogle Scholar

  • [43] Terejanu G., George J. and Singla P., “An Adaptive Gaussian Sum Filter for The Spacecraft Attitude Estimation Problem,” Journal of Astronautical Sciences, Vol. 57, Nos. 1–2, Jan.–June 2009, pp. 31–45. CrossrefGoogle Scholar

  • [44] Stroud A. H. and Secrest D., Gaussian Quadrature Formulas, Prentice–Hall, Upper Saddle River, NJ, 1966, pp. 1–28. Google Scholar

  • [45] Julier S. and Uhlmann J., “Reduced Sigma Point Filters for the Propagation of Means and Covariances Through Nonlinear Transformations,” Proceedings of the 2002 American Control Conference, Vol. 2, American Automatic Control Council, Anchorage, AK, 2002, pp. 887–892 (Inst. of Electrical and Electronics Engineers Catalog Number CH37301). Google Scholar

  • [46] Wu Y., Wu M., Hu D. and Hu X., “An Improvement to Unscented Transformation,” 17th Australian Joint Conference on Artificial Intelligence, Springer, Berlin/Heidelberg/New York, 2004, pp. 1024–1029. Google Scholar

  • [47] Papadimitriou C. H., Computational Complexity, Wiley, Hoboken, NJ, 2003, pp. 366–367. Google Scholar

  • [48] Kozlov M., Tarasov S. and Khachiyan L., “Polynomial Solvability of the Convex Quadratic Programming,” Doklady Akademiia Nauk SSSR [Soviet Physics—Doklady], Vol. 248, 1979, pp. 1049–1051. doi:https://doi.org/10.1016/0041-5553(80)90098-1 Google Scholar