Skip to main content
Skip to article control options
No AccessFull-Length Paper

Rigid-Body Kinematics Versus Flapping Kinematics of a Flapping Wing Micro Air Vehicle

Published Online:https://doi.org/10.2514/1.G000923

Several formulations have been proposed to model the dynamics of ornithopters, with inconclusive results regarding the need for complex kinematic formulations. Furthermore, the impact of assumptions made in the collected results was never assessed by comparing simulations with real flight data. In this study, two dynamic models of a flapping wing micro aerial vehicle were derived and compared: 1) single rigid-body aircraft equations of motion and 2) virtual work principle derivation for multiple rigid-body flapping kinematics. The aerodynamic forces and moments were compared by feeding the states that were reconstructed from the position and attitude data of a 17 g free-flying flapping wing micro aerial vehicle into the dynamic equations of both formulations. To understand the applicability of rigid-body formulations to flapping wing micro aerial vehicles, six wing-to-body mass ratios and two wing configurations were studied using real flight data. The results show that rigid-body models are valid for the aerodynamic reconstruction of flapping wing micro aerial vehicles with four wings in an “X” configuration and two-winged flapping wing micro aerial vehicles with a total wing-to-body mass ratio below 24 and 5.6%, respectively, without considerable information loss.

References

  • [1] Keennon M., Klingebiel K. and Won H., “Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle,” 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2012-0588, 2012. doi:https://doi.org/10.2514/6.2012-588 LinkGoogle Scholar

  • [2] Ma K., Chirarattananon P., Fuller S. and Wood R., “Controlled Flight of a Biologically Inspired, Insect-Scale Robot,” Science, Vol. 340, No. 6132, 2013, pp. 603–607. doi:https://doi.org/10.1126/science.1231806 SCIEAS 0036-8075 CrossrefGoogle Scholar

  • [3] Hines L. L., Arabagi V. and Sitti M., “Free Flight Simulations and Pitch and Roll Control Experiments of a Sub-Gram Flapping-Flight Micro Aerial Vehicle,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, May 2011, pp. 1–7. doi:https://doi.org/10.1109/ICRA.2011.5979816 Google Scholar

  • [4] Baek S. and Fearing R., “Flight Forces and Altitude Regulation of 12 Gram i-Bird,” IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE Publ., Piscataway, NJ, 2010, pp. 454–460. doi:https://doi.org/10.1109/BIOROB.2010.5626347 Google Scholar

  • [5] de Croon G., de Clercq K., Ruijsink R., Remes B. and de Wagter C., “Design, Aerodynamics, and Vision-Based Control of the DelFly,” International Journal of Micro Air Vehicles, Vol. 1, No. 2, 2009, pp. 71–97. doi:https://doi.org/10.1260/175682909789498288 CrossrefGoogle Scholar

  • [6] Gebert G. and Gallmeier P., “Equations of Motion for Flapping Flight,” AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA Paper  2002-4872, Aug. 2002. doi:https://doi.org/10.2514/6.2002-4872 LinkGoogle Scholar

  • [7] Bolender M. A., “Rigid Multi-Body Equations-of-Motion for Flapping Wing MAVs Using Kane Equations,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2009-6158, Aug. 2009. doi:https://doi.org/10.2514/6.2009-6158 LinkGoogle Scholar

  • [8] Grauer J., Ulrich E., Hubbard J. E., Pines D. and Humbert J. S., “Testing and System Identification of an Ornithopter in Longitudinal Flight,” Journal of Aircraft, Vol. 48, No. 2, March–April 2011, pp. 660–667. doi:https://doi.org/10.2514/1.C031208 JAIRAM 0021-8669 LinkGoogle Scholar

  • [9] Orlowski C. T., Girard A. R. and Shyy W., “Four Wing Flapping Micro Air Vehicles—Dragonfies or X-Wings?AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2010-7707, Aug. 2010. doi:https://doi.org/10.2514/6.2010-7707 LinkGoogle Scholar

  • [10] Orlowski C. T. and Girard A. R., “Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles,” AIAA Journal, Vol. 49, No. 5, May 2011, pp. 969–981. doi:https://doi.org/10.2514/1.J050649 AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Dietl J. M. and Garcia E., “Stability in Ornithopter Longitudinal Flight Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, 2008, pp. 1157–1163. doi:https://doi.org/10.2514/1.33561 JGCDDT 0162-3192 LinkGoogle Scholar

  • [12] Dietl J. M., Herrmann T., Reich G. and Garcia E., “Dynamic Modeling, Testing, and Stability Analysis of an Ornithoptic Blimp,” Journal of Bionic Engineering, Vol. 8, No. 4, 2011, pp. 375–386. doi:https://doi.org/10.1016/S1672-6529(11)60043-7-6529(11)60043-7 1672-6529 CrossrefGoogle Scholar

  • [13] Grauer J., Ulrich E., Hubbard J. E., Pines D. and Humbert J. S., “System Identification of an Ornithopter Aerodynamic Model,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper  2010-7632, Aug. 2010. doi:https://doi.org/10.2514/6.2010-7632 LinkGoogle Scholar

  • [14] Caetano J. V., Weehuizen M., de Visser C. C., de Croon G., de Wagter C., Remes B. and Mulder M., “Rigid vs. Flapping: The Effects of Kinematics Formulations in Force Determination of a Free Flying Flapping Wing Micro Air Vehicle,” 2014 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE Publ., Piscataway, NJ, 2014, pp. 949–959. doi:https://doi.org/10.1109/ICUAS.2014.6842345 Google Scholar

  • [15] Van den Berg C. and Rayner J. M., “Moment of Inertia of Bird Wings and the Inertial Power Requirement for Flapping Flight,” Journal of Experimental Biology, Vol. 198, No. 8, 1995, pp. 1655–1664. JEBIAM 0022-0949 Google Scholar

  • [16] Taylor G. K. and Thomas A. L. R., “Dynamic Flight Stability in the Desert Locust Schistocerca gregaria,” Journal of Experimental Biology, Vol. 206, No. 16, 2003, pp. 2803–2829. doi:https://doi.org/10.1242/jeb.00501 JEBIAM 0022-0949 CrossrefGoogle Scholar

  • [17] Wang G. J. B. Z. J., “Energy-Minimizing Kinematics in Hovering Insect Flight,” Journal of Fluid Mechanics, Vol. 582, July 2007, pp. 223–251. doi:https://doi.org/10.1017/S0022112007005824 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [18] Wright State University Center for Excellence in Micro Air Vehicle Research,” Wright State Univ., Dayton, OH, 2010, http://cecs.wright.edu/mav/research/projects.shtml#techniques [retrieved 15 Dec. 2014]. Google Scholar

  • [19] Rose C. and Fearing R. S., “Comparison of Ornithopter Wind Tunnel Force Measurements with Free Flight,” 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE Publ., Piscataway, NJ, May–June 2014, pp. 1816–1821. doi:https://doi.org/10.1109/ICRA.2014.6907097 Google Scholar

  • [20] Stevens B. L. and Lewis F. L., Aircraft Control and Simulation, 2nd ed., Wiley, Hoboken, NJ, 2003, p. 110. Google Scholar

  • [21] Caetano J. V., de Visser C., de Croon G., Remes B., de Wagter C., Verboom J. and Mulder M., “Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data,” International Journal of Micro Air Vehicles, Vol. 5, No. 4, Dec. 2013, pp. 273–286. doi:https://doi.org/10.1260/1756-8293.5.4.273-8293.5.4.273 CrossrefGoogle Scholar

  • [22] Groen M., Bruggeman B., Remes B., Ruijsink R., van Oudheusden B. and Bijl H., “Improving Flight Performance of the Flapping Wing MAV DelFly II,” International Competition and Conference on Micro Air Vehicles, IMAV 2012, Technische Universitat Braunschweig, Braunschweig, Germany, 2010, http://www.delfly.nl/publications/DelFly_aero_IMAV.pdf [retrieved 14 May 2014]. Google Scholar

  • [23] de Croon G. C. H. E., Groen M. A., Wagter C. D., Remes B., Ruijsink R. and van Oudheusden B. W., “Design, Aerodynamics and Autonomy of the DelFly,” Bioinspiration & Biomimetics, Vol. 7, No. 2, 2012, Paper 025003. doi:https://doi.org/10.1088/1748-3182/7/2/025003 CrossrefGoogle Scholar

  • [24] Phillips W. F., Hailey C. E. and Gebert G. A., “Review of Attitude Representations Used for Aircraft Kinematics,” Journal of Aircraft, Vol. 38, No. 4, July 2001, pp. 718–737. doi:https://doi.org/10.2514/2.2824 JAIRAM 0021-8669 LinkGoogle Scholar

  • [25] Baruh H., Analytical Dynamics, McGraw–Hill Higher Education, New York, 1999, Chap. 4. Google Scholar

  • [26] Caetano J. V., Verboom J., de Visser C., de Croon G., Remes B., de Wagter C. and Mulder M., “Near-Hover Flapping Wing MAV Aerodynamic Modelling—A Linear Model Approach,” International Conference and Competition on Micro Air Vehicles, École Nationale de l'Aviation Civile, Toulouse, France, 2013, http://www.imav2013.org/index.php/component/phocadownload/category/3-scientific-session-3%3Fdownload=20:2-near-hover-flapping-wing-mav-aerodynamic-modelling-a-linear-model-approach [retrieved 14 May 2014]. Google Scholar

  • [27] Caetano J. V., de Visser C. C., Remes B., de Wagter C. and Mulder M., “Controlled Flight Maneuvers of a Flapping Wing Micro Air Vehicle: A Step Towards the DelFly II Identification,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper  2013-4843, 2013. doi:https://doi.org/10.2514/6.2013-4843 LinkGoogle Scholar

  • [28] Caetano J. V., de Visser C. C., Remes B., de Wagter C. and Mulder M., “Modeling a Flapping Wing MAV: Flight Path Reconstruction of the DelFly II,” AIAA Modeling and Simulation Technologies, AIAA Paper  2013-4597, 2013. doi:https://doi.org/10.2514/6.2013-4597 Google Scholar

  • [29] Lim G., Shkarayev S., Goff Z. and Beran P., “Studies of Flight Kinematics of Ornithopters,” International Competition and Conference on Micro Air Vehicles, IMAV 2012, 2012. Google Scholar

  • [30] Shkarayev S. and Maniar G., “Experimental and Computational Modeling of the Kinematics and Aerodynamics of Membrane Flapping Wings,” 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper  2012-1208, Jan. 2012. LinkGoogle Scholar

  • [31] Hsiao F. Y., Yang T. M. and Lu W. C., “Dynamics of Flapping-Wing MAVs: Application to the Tamkang Golden Snitch,” Journal of Applied Science and Engineering, Vol. 15, No. 3, 2012, pp. 227–238. Google Scholar