Skip to main content
Skip to article control options
No AccessSpecial Issue in Honor of Richard Battin

Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics

Published Online:https://doi.org/10.2514/1.G000987

The dynamic tracking of objects is, in general, concerned with state estimation using imperfect data. Multiple object tracking adds the difficulty of encountering unknown associations between the collected data and the objects. State estimation of objects necessitates the prediction of uncertainty through nonlinear (in the general case) dynamical systems and the processing of nonlinear (in the general case) measurement data in order to provide corrections that refine the system uncertainty, where the uncertainty may be non-Gaussian in nature. The sensors, which provide the measurement data, are imperfect with possible misdetections, false alarms, and noise-affected data. The resulting measurements are inherently unassociated upon reception. In this paper, a Bayesian method for tracking an arbitrary, but known, number of objects is developed. The method is based on finite-set statistics coupled with finite mixture model representations of the multiobject probability density function. Instead of relying on first-moment approximations, such as the probability hypothesis density filter, to the full multiobject Bayesian posterior, as is often done for multiobject filtering, the proposed method operates directly on the exact Bayesian posterior. Results are presented for application of the method to the problem of tracking multiple space objects using synthetic line-of-sight data.

References

  • [1] Schildknecht T., “Optical Surveys for Space Debris,” Astronomy and Astrophysics Review, Vol. 14, No. 1, 2007, pp. 41–111. doi:https://doi.org/10.1007/s00159-006-0003-9 CrossrefGoogle Scholar

  • [2] Kelecy T. and Jah M., “Analysis of High Area-to-Mass Ratio (HAMR) GEO Space Object Orbit Determination: Initial Strategies to Recover and Predict HAMR GEO Trajectories with No a Priori Information,” Acta Astronautica, Vol. 69, Nos. 7–8, 2011, pp. 551–558. doi:https://doi.org/10.1016/j.actaastro.2011.04.019 CrossrefGoogle Scholar

  • [3] Hall D., Calef B., Knox K., Bolden M. and Kervin P., “Separating Attitude and Shape Effects for Non-resolved Objects,” Advanced Maui and Space Surveillance Technologies (AMOS) Conference, Curran Associates, Red Hook, NY, Sept. 2007. Google Scholar

  • [4] DeMars K. J., Jah M. K. and Schumacher P. W., “Initial Orbit Determination using Short-Arc Angle and Angle Rate Data,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, July 2012, pp. 2628–2637. doi:https://doi.org/10.1109/TAES.2012.6237613 CrossrefGoogle Scholar

  • [5] Maruskin J. M., Scheeres D. J. and Alfriend K. T., “Correlation of Optical Observations of Objects in Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, Jan.–Feb. 2009, pp. 194–209. doi:https://doi.org/10.2514/1.36398 LinkGoogle Scholar

  • [6] Früh C., Schildknecht T., Musci R. and Ploner M., “Catalogue Correlation of Space Debris Objects,” Proceedings of the Fifth European Conference on Space Debris, ESA Communication Production Office, Noordwijk, The Netherlands, 2009. Google Scholar

  • [7] Goodman I. R., Mahler R. P. S. and Nguyen H. T., Mathematics of Data Fusion, Kluwer, Dordrecht, The Netherlands, 1997, pp. 131–174, 175–218, Chaps. 4, 5. CrossrefGoogle Scholar

  • [8] Mahler R. P. S., Statistical Multisource-Multitarget Information Fusion, Artec House, Norwood, MA, 2007, pp. 483–537, 655–682, Chaps. 14, 17. Google Scholar

  • [9] Vo B. and Ma W., “The Gaussian Mixture Probability Hypothesis Density Filter,” IEEE Transactions on Signal Processing, Vol. 54, No. 11, Nov. 2006, pp. 4091–4104. doi:https://doi.org/10.1109/TSP.2006.881190 CrossrefGoogle Scholar

  • [10] Mahler R. P. S., “Multitarget Markov Motion Models,” SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition VIII, Vol. 3720, July 1999, pp. 47–58. doi:https://doi.org/10.1117/12.357192 CrossrefGoogle Scholar

  • [11] DeMars K. J., Bishop R. H. and Jah M. K., “A Splitting Gaussian Mixture Method for the Propagation of Uncertainty in Orbital Mechanics,” Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Vol. 140, Advances in the Astronautical Sciences, Univelt, San Diego, CA, Feb. 2011, pp. 1419–1438. Google Scholar

  • [12] DeMars K. J., Bishop R. H. and Jah M. K., “Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, July–Aug. 2013, pp. 1047–1057. doi:https://doi.org/10.2514/1.58987 LinkGoogle Scholar

  • [13] Hussein I., DeMars K. J., Früh C., Erwin R. S. and Jah M. K., “An AEGIS-FISST Integrated Detection and Tracking Approach to Space Situational Awareness,” Proceedings of the 15th International Conference of Information Fusion, IEEE, Piscataway, NJ, July 2012, pp. 2065–2072. Google Scholar

  • [14] Sorenson H. W. and Alspach D. L., “Recursive Bayesian Estimation Using Gaussian Sums,” Automatica, Vol. 7, No. 4, Aug. 1971, pp. 465–479. doi:https://doi.org/10.1016/0005-1098(71)90097-5 CrossrefGoogle Scholar

  • [15] Alspach D. L. and Sorenson H. W., “Nonlinear Bayesian Estimation Using Gaussian Sum Approximations,” IEEE Transactions on Automatic Control, Vol. 17, No. 4, Aug. 1972, pp. 439–448. doi:https://doi.org/10.1109/TAC.1972.1100034 CrossrefGoogle Scholar

  • [16] Terejanu G., Singla P., Singh T. and Scott P., “Uncertainty Propagation for Nonlinear Dynamic Systems using Gaussian Mixture Models,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, Nov.–Dec. 2008, pp. 1623–1633. doi:https://doi.org/10.2514/1.36247 LinkGoogle Scholar

  • [17] DeMars K. J., “Nonlinear Orbit Uncertainty Prediction and Rectification for Space Situational Awareness,” Ph.D. Thesis, Univ. of Texas, Austin, TX, 2010. Google Scholar

  • [18] Vallée R, “Information Entropy and State Observation of a Dynamical System,” Uncertainty in Knowledge-Based Systems, edited by Bouchon B. and Yager R., Vol. 286, Lecture Notes in Computer Science, Springer, Berlin, 1987, pp. 403–405. doi:https://doi.org/10.1007/3-540-18579-8_38 CrossrefGoogle Scholar

  • [19] Julier S. J., Uhlmann J. K. and Durrant-Whyte H. F., “A New Approach for Filtering Nonlinear Systems,” Proceedings of the American Control Conference, Vol. 3, June 1995, pp. 1628–1632. doi:https://doi.org/10.1109/ACC.1995.529783 Google Scholar

  • [20] Vo B.-T., Vo B.-N. and Cantoni A., “Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter,” IEEE Transactions on Signal Processing, Vol. 55, No. 7, July 2007, pp. 3553–3567. doi:https://doi.org/10.1109/TSP.2007.894241 CrossrefGoogle Scholar

  • [21] Schuhmacher D., Vo B.-T. and Vo B.-N., “A Consistent Metric for Performance Evaluation of Multi-Object Filters,” IEEE Transactions on Signal Processing, Vol. 56, No. 8, 2008, pp. 3447–3457. doi:https://doi.org/10.1109/TSP.2008.920469 CrossrefGoogle Scholar

  • [22] Früh C. and Schildknecht T., “Object Image Linking of Objects in Near Earth Orbits in the Presence of Cosmics,” Advances in Space Research, Vol. 49, No. 3, 2012, pp. 594–602. doi:https://doi.org/10.1016/j.asr.2011.10.021 CrossrefGoogle Scholar

  • [23] Früh C., Identification of Space Debris, Shaker Verlag, Aachen, Germany, 2011, pp. 31–54, Chap. 5. Google Scholar