Skip to main content
Skip to article control options
No AccessFull-Length Paper

Control Cost and Mahalanobis Distance Binary Hypothesis Testing for Spacecraft Maneuver Detection

Published Online:https://doi.org/10.2514/1.G001616

An anomaly hypothesis testing technique using the minimum-fuel control distance metric is extended to incorporate non-Gaussian boundary-condition uncertainties and employ binary hypothesis testing. The adjusted control distance metric uses Gaussian-mixture models to model non-Gaussian boundary conditions, and binary hypothesis testing allows inclusion of anomaly detection thresholds and allowable error rates. An analogous framework accommodating Gaussian-mixture models and binary hypothesis testing is developed using Mahalanobis distance. Both algorithms are compared using simulated and empirical satellite maneuver data. The north–south station-keeping scenario shows control distance to be less sensitive with increased uncertainty than Mahalanobis distance but more consistent with respect to observation gap duration, a trend which is corroborated using available real-world data. The same consistency with respect to observation gap is observed in East–west station-keeping while also showing the control distance metric to be more sensitive for shorter observation gaps. In the non-Gaussian boundary-condition case, control distance outperforms Mahalanobis distance in both detection and computational complexity. A synergistic operational application of these methods is presented.

References

  • [1] James L., “Keeping the Space Environment Safe for Civil and Commercial Users,” Statement of Lieutenant General Larry James, Commander, Joint Functional Component Command for Space, Before the Subcommittee on Space and Aeronautics, 2009. Google Scholar

  • [2] Liou J.-C., “Modeling the Large and Small Orbital Debris Populations for Environment Remediation,” NASA Orbital Debris Program Office, NASA Johnson Space Center TR, Houston, TX, June 2014. Google Scholar

  • [3] Cox C., Degraaf E. J., Wood R. J. and Crocker T. H., “Intelligent Data Fusion for Improved Space Situational Awareness,” Space 2005, AIAA Paper  2005-6818, 2005. doi:https://doi.org/10.2514/6.2005-6818 LinkGoogle Scholar

  • [4] Oltrogge D., Alfana S. and Gist R., “Satellite Mission Operations Improvements Through Covariance Based Methods,” SatMax 2002: Satellite Performance Workshop, AIAA Paper  2002-1814, April 2002. Google Scholar

  • [5] Kelso T. S., “Analysis of the Iridium 33—Cosmos 2251 Collision,” Advanced Maui Optical and Space Surveillance Technologies Conference, AAS Paper  09-368, Maui Economic Development Board, Inc., Sept. 2009. Google Scholar

  • [6] Kelecy T., Hall D., Hamada K. and Stocker D., “Satellite Maneuver Detection Using Two-Line Element (TLE) Data,” Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui Economic Development Board, Inc., Kihei, HI, 2007. Google Scholar

  • [7] Ray A., “Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection,” Journal: Signal Processing, Vol. 84, No. 7, July 2004, pp. 1115–1130.doi:https://doi.org/10.1016/j.sigpro.2004.03.011 CrossrefGoogle Scholar

  • [8] Kelecy T. and Jah M., “Detection and Orbit Determination of a Satellite Executing Low Thrust Maneuvers,” Acta Astronautica, Vol. 66, No. 5, 2010, pp. 798–809. doi:https://doi.org/10.1016/j.actaastro.2009.08.029 CrossrefGoogle Scholar

  • [9] Hoots F. R. and Schumacher P. W., “History of Analytical Orbit Modeling in the U.S. Space Surveillance System,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 174–185. doi:https://doi.org/10.2514/1.9161 LinkGoogle Scholar

  • [10] Holzinger M. J., Scheeres D. J. and Alfriend K. T., “Object Correlation, Maneuver Detection, and Characterization Using Control-Distance Metrics,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, July 2012, pp. 1312–1325. doi:https://doi.org/10.2514/1.53245 LinkGoogle Scholar

  • [11] Horwood J. T., Aragon N. D. and Poore A. B., “A Gaussian Sum Filter Framework for Space Surveillance,” Signal and Data Processing of Small Targets, edited by Drummond O. E., Vol. 8137, San Diego, CA, Sept. 2011, Paper 81370K.doi:https://doi.org/10.1117/12.892796 CrossrefGoogle Scholar

  • [12] Tommei G., Milani A. and Rossi A., “Orbit Determination of Space Debris: Admissible Regions,” Celestial Mechanics and Dynamical Astronomy, Vol. 97, No. 4, 2007, pp. 289–304. doi:https://doi.org/10.1007/s10569-007-9065-x CrossrefGoogle Scholar

  • [13] Maruskin J. M., Scheeres D. J. and Alfriend K. T., “Correlation of Optical Observations of Objects in Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, Jan. 2009, pp. 194–209. doi:https://doi.org/10.2514/1.36398 LinkGoogle Scholar

  • [14] Fujimoto K. and Scheeres D., “Correlation of Optical Observations of Earth-Orbiting Objects and Initial Orbit Determination,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 208–221. doi:https://doi.org/10.2514/1.53126 LinkGoogle Scholar

  • [15] DeMars K. J., Hussein I. I., Frueh C., Jah M. K. and Scott Erwin R., “Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, March 2015, pp. 1741–1756. doi:https://doi.org/10.2514/1.G000987 LinkGoogle Scholar

  • [16] Huang J., Hu W.-D., Xin Q. and Du X.-Y., “An Object Correlation and Maneuver Detection Approach for Space Surveillance,” Research in Astronomy and Astrophysics, Vol. 12, No. 10, 2012, pp. 1402–1416. CrossrefGoogle Scholar

  • [17] Gallego G., Cuevas C., Mohedano R. and Garcia N., “On the Mahalanobis Distance Classification Criterion for Multidimensional Normal Distributions,” IEEE Transactions on Signal Processing, Vol. 61, No. 17, June 2013, pp. 4387–4396. doi:https://doi.org/10.1109/TSP.2013.2269047 CrossrefGoogle Scholar

  • [18] Holzinger M. J., “Delta-V Metrics for Object Correlation, Maneuver Detection, and Maneuver Characterization,” AIAA Guidance, Navigation and Control Conference, AIAA Paper  2011-6494, Aug. 2011. doi:https://doi.org/10.2514/6.2011-6494 LinkGoogle Scholar

  • [19] Montgomery D. C. and Runger G. C., Applied Statistics and Probability for Engineers, 5th ed., Wiley, Hoboken, NJ, 2010, pp. 283–350. Google Scholar

  • [20] Yan Q., “Distributed Signal Detection Under the Neyman-Pearson Criterion,” IEEE Transactions on Information Theory, Vol. 47, No. 4, 2001, pp. 1368–1377. doi:https://doi.org/10.1109/18.923720 CrossrefGoogle Scholar

  • [21] Neyman J. and Pearson E. S., “On the Problem of the Most Efficient Tests of Statistical Hypotheses,” Philosophical Transactions of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences, Vol. 231, Nos. 694–706, 1933, pp. 239–337. doi:https://doi.org/10.1098/rsta.1933.0009 Google Scholar

  • [22] Longuski J. M., Guzman J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014, pp. 190–203. CrossrefGoogle Scholar

  • [23] Jaunzemis A. D., Mathew M. V. and Holzinger M. J., “Control Metric Maneuver Detection with Gaussian Mixtures and Real Data,” 25th Spaceflight Mechanics Meeting, AAS Paper  15-329, Charleston, VA, Jan. 2015. Google Scholar

  • [24] Holzinger M. J., Scheeres D. J. and Alfriend K. T., “Delva-V Distance Object Correlation and Maneuver Detection with Dynamics Parameter Uncertainty and Generalized Constraints,” Proceedings of the 219th American Astronomical Society Meeting, AAS Paper  12-110, Austin, TX, Jan. 2012. Google Scholar

  • [25] Hill K., Alfriend K. T. and Sabol C., “Covariance-Based Uncorrelated Track Association,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper  2008-7211, 2008. doi:https://doi.org/10.2514/6.2008-7211 LinkGoogle Scholar

  • [26] Li X. Q. and King I., “Gaussian Mixture Distance for Information Retrieval,” IEEE International Joint Conference on Neural Networks, Vol. 4, IEEE, Piscataway, NJ, 1999, pp. 2544–2549. doi:https://doi.org/10.1109/IJCNN.1999.833474 Google Scholar